首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
admin
2019-05-10
99
问题
[2006年] 已知非齐次线性方程组
有3个线性无关的解.
(I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
选项
答案
由非齐次线性方程组AX=b中线性无关的解得到相应的齐次线性方程组的线性无关的解,从而得到系数矩阵的秩的信息,再利用秩的定义可证(I). 利用(I)的结果即可求得a,b,进而可求解方程组. (I)证一 由题设有n一秩(A)+1≥3,即5一秩(A)≥3,故秩(A)≤2.又A中有一个二阶子式Δ
2
=[*]≠0,于是秩(A)≥2.综上所述,可知秩(A)=2. 证二 设α
1
,α
2
,α
3
为所给方程组AX=b的3个线性无关的解,则α
1
一α
2
,α
2
一α
3
为对应的齐次方程AX=0的两个线性无关的解,因而n一秩(A)≥2,即4一秩(A)≥2,故秩(A)≤2.又Δ
2
≠0,故秩(A)≥2,所以秩(A)=2. (Ⅱ)对增广矩阵施以初等行变换,有 [*] 因秩(A)=2,故4—2a=0,4a+b—5=0,联立两方程解得a=2,b=一3,此时有 [*] 由基础解系和特解的简便求法即得基础解系为α
1
=[一2,1,1,0]
T
,α
2
=[4,一5,0,1]
T
, 特解η=[2,一3,0,0]
T
,故其通解为x=k
1
α
1
+k
2
α
2
+η,其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JVV4777K
0
考研数学二
相关试题推荐
设函数f(χ)满足χf′(χ)-2f(χ)=-χ,且由曲线y=f(χ),χ=1及χ轴(χ≥0)所围成的平面图形为D.若D绕χ轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(χ);(2)曲线在原点处的切线与曲线及直线χ=1所围成的平面
设f(χ)是(-∞,+∞)上的连续非负函数,且f(χ)∫0χ(χ-t)dt=sin4χ,求f(χ)在区间[0,π]上的平均值.
证明:,其中a>0为常数.
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
确定常数a,b,c,使得=c.
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.(1)试求D1绕x轴旋转而成的旋转体的体积V1;D2绕y轴旋转而成的旋转体的体积V2;(2)问
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分。求曲线y=f(x)的方程。
设函数y=y(x)由参数方程确定,其中x(t)是初值问题
[2018年]设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则().
随机试题
汉坦病毒的核酸类型是()
下述哪些疾病可以使用腹腔镜手术治疗
在评估资本预算项目时,ABC公司的管理会计师想要掌握,经营性收益与项目年限发生变化后对于该项目盈亏内部收益的影响。该会计师最有可能使用的方法是
某商品2000年2月1日A商品库存20000元,本月购进商品成本为6000元,本月商品销售收入15000元,发生销售折让3000元,上月该商品的毛利率为10%,本月月末库存商品的成本是()。
结构性资产或负债指经营上难以避免的策略性外币资产或负债,主要包括()。
韩雨是一名留守儿童。据他所描述,他的母亲远在深圳打工,从他一岁后几乎就没有怎么见过妈妈。在韩雨三岁以前,主要是由他的爷爷奶奶代为照顾。请问题目中,韩雨在婴幼儿阶段面临()问题。
()是指有计划、有目的的教学观摩,适用于刚入职的新手型教师和教学经验欠缺的年轻教师。
所有交流量的最大值都是有效值的倍。()
Whatdepartmentdoesthespeakerworkin?
WhyAreAirlinesWithholdingSeats?[A]AfewmonthsagoIbookedaflightfortwoandthenwenttoselectseatsontheairline’
最新回复
(
0
)