首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
admin
2019-05-10
125
问题
[2006年] 已知非齐次线性方程组
有3个线性无关的解.
(I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
选项
答案
由非齐次线性方程组AX=b中线性无关的解得到相应的齐次线性方程组的线性无关的解,从而得到系数矩阵的秩的信息,再利用秩的定义可证(I). 利用(I)的结果即可求得a,b,进而可求解方程组. (I)证一 由题设有n一秩(A)+1≥3,即5一秩(A)≥3,故秩(A)≤2.又A中有一个二阶子式Δ
2
=[*]≠0,于是秩(A)≥2.综上所述,可知秩(A)=2. 证二 设α
1
,α
2
,α
3
为所给方程组AX=b的3个线性无关的解,则α
1
一α
2
,α
2
一α
3
为对应的齐次方程AX=0的两个线性无关的解,因而n一秩(A)≥2,即4一秩(A)≥2,故秩(A)≤2.又Δ
2
≠0,故秩(A)≥2,所以秩(A)=2. (Ⅱ)对增广矩阵施以初等行变换,有 [*] 因秩(A)=2,故4—2a=0,4a+b—5=0,联立两方程解得a=2,b=一3,此时有 [*] 由基础解系和特解的简便求法即得基础解系为α
1
=[一2,1,1,0]
T
,α
2
=[4,一5,0,1]
T
, 特解η=[2,一3,0,0]
T
,故其通解为x=k
1
α
1
+k
2
α
2
+η,其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JVV4777K
0
考研数学二
相关试题推荐
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
矩阵的非零特征值是a3=_______.
设函数y=y(χ)由方程组确定,求
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设A=有三个线性无关的特征向量,则a=_______.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,求f(0)与f(一1)的值;
[2017年]求
随机试题
调节器的比例度越大则放大倍数越小比例调节作用越弱过渡曲线越平稳但余差越大。
下列选项中属于非完全竞争市场条件下定价决策的有()
唐代依汉代管理西域之例,为协调与少数民族关系、管理各归附少数民族而设立的行政机构是()
下列活动中,属于最基本的实践活动的是()。
上消化道出血量达到约5~10ml时,粪便隐血试验即可呈现阳性反应;当出血量达50~70ml以上,可表现为黑便。()
因咳嗽5天伴发热2天的支气管炎患儿,不应采取的措施是
主要作用于髓袢升支粗段皮质部和髓质部的利尿药是
下列关于城镇土地使用税征税范围的说法,不正确的是()。
根据《劳动法》的规定,日劳动时间一般是8小时工作制,每日工休时间不少于(),每周工作日5天,每年享受法定的节假日,如果有加班,还要有不同数量的补贴或倒休制度。
在科技馆工作的小文需要制作一份介绍诺贝尔奖的PowerPoint演示文稿,以便为科普活动中的参观者进行讲解。按照下列要求,帮助他完成此项任务。修改第8~10张幻灯片为“两栏内容”版式,并在右侧占位符中分别插入图片“萨特.jpg”、“希格斯.jpg”和“
最新回复
(
0
)