首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为______.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为______.
admin
2019-03-12
56
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,则Ax=β的通解为______.
选项
答案
[*],k
1
,k
2
均为任意常数
解析
由
β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
可知
均为Ax=β的解,故β
1
一β
2
=
均为Ax=0的解.
由于α
1
,α
2
线性无关,可知r(A)≥2.又由于Ax=0有两个线性无关的解β
1
一β
2
,β
2
一β
3
,可知Ax=0的基础解系中至少含有两个向量,也即4一r(A)≥2,即r(A)≤2.
综上,r(A)=2,Ax=0的基础解系中含有两个线性无关的向量,故β
1
一β
2
,β
2
一β
3
即为Ax=0的基础解系.故Ax=β的通解为
,k
1
,k
2
均为任意常数.
转载请注明原文地址:https://www.kaotiyun.com/show/JVP4777K
0
考研数学三
相关试题推荐
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,一2,1)T,η3=(一2,一1,2)T,它们的特征值依次为1,2,3,求A.
如果n阶矩阵A的秩r(A)≤1,(n>1),则A的特征值为0,0,…,0,tr(A).
已知两个线性方程组同解,求m,n,t.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
(Ⅰ)求函数y(x)=1++…(一∞<x<+∞)所满足的二阶常系数线性微分方程;(Ⅱ)求(Ⅰ)中幂级数的和函数y(x)的表达式.
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足P{|一μ|<μ}=0.95的常数μ=________.(φ(1.96)=0.975)
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pqm-1,m=1,2,…,0<p<1,q=1一p,Y服从标准正态分布N(0,1).求:(Ⅰ)U=X+Y的分布函数;(Ⅱ)V=XY的分布函数.
设X一N(μ,σ2),其中μ和σ2(σ>0)均为未知参数,从总体X中抽取样本X1,X2,…,Xn样本均值为,则未知参数μ和σ2的矩估计量分别为.
随机试题
公共关系活动模式主要包括()
有关Tg的描述错误的是
如果DNA链上的鸟嘌呤被胸腺嘧啶取代,这种突变称为
用水提石灰沉淀法提取绿原酸,收率较低的原因是绿原酸的结构中存在
某农村集体经济组织人均耕地面积0.2hm2(公顷),国家建设征收该农村集体经济组织的耕地面积10hm2,该耕地近3年平均年产值为10000元/hm2。下列关于征收该耕地的表述中,不正确的是()。[2005年考题]
为发展经济,A市拟当地经济发展特点大力发展畜禽养殖业,拟投资500万元在A市西北方向的城郊建设一个养牛场,规划用地50亩,养殖规模为存栏2000头。养牛场采取半封闭式养殖,设置集中污水处理站将冲洗牛舍的废水就地处理后排入B河(该河流无饮用功能),牛粪由附近
工程变更的补偿范围通常以()一定的百分比表示。通常这个百分比越大,承包人的风险越大。
在相关资产可以开始资本化的期间,东大公司下列有关借款费用的会计处理表述中,正确的有( )。A注册会计师对东大公司减值准备进行审计时,可以实行的实质性程序包括( )。
下列说法中,包含着创新思想的是()。
下面是一位实习教师的教学日志,请根据材料回答问题。小黎是初中二年级的一位女生,父母双双外出打工。她个性很特别,在班上,她与同学的关系不太融洽,甚至有点紧张。开学初曾与一名男同学打架,对班主任的批评教育反应强烈,存在明显的抵触情绪。有一次晚自修课上,她戴耳
最新回复
(
0
)