首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…). (I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn; (Ⅱ)求(I)中的{xn)的极限值.
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…). (I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn; (Ⅱ)求(I)中的{xn)的极限值.
admin
2019-06-29
73
问题
设f
n
(x)=x﹢x
2
﹢…﹢x
n-1
(n=2,3,…).
(I)证明方程f
n
(x)=0在区间[0,﹢∞)内存在唯一的实根,记为x
n
;
(Ⅱ)求(I)中的{x
n
)的极限值
.
选项
答案
(I)由f
n
(0)=-1﹤0,f
n
(1)=n-1>0,n=2,3,…,所以f
n
(x)=0在区间(0,1)内存在实根,记为x
n
. 以下证在区间(0,﹢∞)内至多存在一个实根.事实上, f
n
’
(x)=1﹢2x﹢3x﹢…﹢nx
n-1
﹥0,x∈(0,﹢∞). 所以在区间(0,﹢∞)内f
n
(x)=0至多存在一个实根.结合以上讨论至少一个至多一个,所以f
n
(x)=0在区间(0,﹢∞)内存在唯一的实根,且在区间(0,1)内.记此根为x
n
(n=2,3,…). (Ⅱ)欲求[*],先证其存在,为此,证{x
n
}单调减少. 0=f
n
(x
n
)-f
n﹢1
(x
n﹢1
) =(
n
﹢
n
2
﹢…﹢x
n
n
)-(
n﹢1
﹢
n﹢1
2
﹢…﹢x
n﹢1
n
﹢x
n﹢1
n﹢1
) =(x
n
-x
n﹢1
)[1﹢(x
n
﹢
n﹢1
)﹢…﹢(x
n
n-1
﹢x
n
n-2
x
n﹢1
﹢…﹢x
n﹢1
n-1
]-x
n﹢1
n-1
. 由[ ]内为正,等号左边为0,所以x
n
-x
n﹢1
﹥0(n=2,3,…),不然上面等号右边为负,与左边为零矛盾.于是知{x
n
}随n增加而严格单调减少,且有下界(x
n
﹥0).所以 [*] 另一方面,由x
n
﹤x
2
﹤1(n>2),所以0﹤x
n
n
﹤x
2
n
. 但0﹤x
2
﹤1,由夹逼定理知[*]=0. 由0=f
n
(x
n
)=x
n
﹢x
n
2
﹢…﹢x
n
n
-1 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IsN4777K
0
考研数学二
相关试题推荐
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。P为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设A为三阶实对称矩阵,A的秩为2,且求矩阵A。
若矩阵A=相似于对角阵,试确定常数a的值;并求可逆矩阵P使P-1AP=。
设矩阵A=且A3=O。求a的值;
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an=f(k)-∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在。
设平面区域D={(x,y)|1≤x2+y2≤4,x≥0,y≥0},计算dxdy。
设区域D={(x,y)}|x2+y2≤1,x≥0},计算二重积分dxdy。
作积分变量变换,令x=tanu,则dx=sec2udu,[*]
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x=()
随机试题
可用作软胶囊填充物料的是
A.慢性病证B.五脏病证C.六腑病证D.急性病证E.表里经脉病证络穴主治的是()
劳动者可以在用人单位所在地或者本人居住地()的医疗机构进行职业病诊断。
以下属于导致合同变更与撤销的重大误解的构成条件是()。
预应力钢丝束的两端均采用墩头锚具时,同一束中各钢丝下料长度的相对差值,当钢丝束长度大于()时,不宜大于1/5000,且不大于5mm。
假如一个教师把大量的时间用于与学生搞好个人关系上,那么他处于教师成长的()。
设f(x)=下述命题成立的是()
A、 B、 C、 D、 B
瀑布模型强调逻辑设计与物理设计清楚地划分开来,尽可能推迟程序的物理实现。快速原型仅包括未来系统的【】,以及系统的重要接口,以提高设计效率。
(清华大学2007年试题)Seariseasaconsequenceofglobalwarmingwouldimmediatelythreatenthatlargefractionoftheglobeliving
最新回复
(
0
)