首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…). (I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn; (Ⅱ)求(I)中的{xn)的极限值.
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…). (I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn; (Ⅱ)求(I)中的{xn)的极限值.
admin
2019-06-29
74
问题
设f
n
(x)=x﹢x
2
﹢…﹢x
n-1
(n=2,3,…).
(I)证明方程f
n
(x)=0在区间[0,﹢∞)内存在唯一的实根,记为x
n
;
(Ⅱ)求(I)中的{x
n
)的极限值
.
选项
答案
(I)由f
n
(0)=-1﹤0,f
n
(1)=n-1>0,n=2,3,…,所以f
n
(x)=0在区间(0,1)内存在实根,记为x
n
. 以下证在区间(0,﹢∞)内至多存在一个实根.事实上, f
n
’
(x)=1﹢2x﹢3x﹢…﹢nx
n-1
﹥0,x∈(0,﹢∞). 所以在区间(0,﹢∞)内f
n
(x)=0至多存在一个实根.结合以上讨论至少一个至多一个,所以f
n
(x)=0在区间(0,﹢∞)内存在唯一的实根,且在区间(0,1)内.记此根为x
n
(n=2,3,…). (Ⅱ)欲求[*],先证其存在,为此,证{x
n
}单调减少. 0=f
n
(x
n
)-f
n﹢1
(x
n﹢1
) =(
n
﹢
n
2
﹢…﹢x
n
n
)-(
n﹢1
﹢
n﹢1
2
﹢…﹢x
n﹢1
n
﹢x
n﹢1
n﹢1
) =(x
n
-x
n﹢1
)[1﹢(x
n
﹢
n﹢1
)﹢…﹢(x
n
n-1
﹢x
n
n-2
x
n﹢1
﹢…﹢x
n﹢1
n-1
]-x
n﹢1
n-1
. 由[ ]内为正,等号左边为0,所以x
n
-x
n﹢1
﹥0(n=2,3,…),不然上面等号右边为负,与左边为零矛盾.于是知{x
n
}随n增加而严格单调减少,且有下界(x
n
﹥0).所以 [*] 另一方面,由x
n
﹤x
2
﹤1(n>2),所以0﹤x
n
n
﹤x
2
n
. 但0﹤x
2
﹤1,由夹逼定理知[*]=0. 由0=f
n
(x
n
)=x
n
﹢x
n
2
﹢…﹢x
n
n
-1 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IsN4777K
0
考研数学二
相关试题推荐
已知A,B为三阶方阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵。证明:矩阵A一2E可逆;
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设。求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
矩阵相似的充分必要条件为()
设m,n均是正整数,则反常积分∫01dx的收敛性()
已知函数f(x)在(0,+∞)内可导,f(x)>0,f(x)=1,且满足=e1/x,求f(x)。
作积分变量变换,令x=tanu,则dx=sec2udu,[*]
确定积分的符号.
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,C,d为常数)()
随机试题
A.小便频数B.小便点滴而短少C.小便不通D.吞咽之时哽噎不顺E.呕吐时作关格中格的特殊含义是
下列选项中,属于企业投资项目咨询评估报告中的经济影响评估的内容的有()
风险管理计划有效性的衡量基准是()。
在边坡高度大于20m地段,对于岩质软弱、松散的傍山路堑,施工作业措施包括()。
用于分析比较动脉血压值不相同的个体之间心脏泵血功能的常用指标是()。
在通货膨胀比较严重、且预期通货膨胀问题能够在近期内明显缓解的情况下,长期利率会低于短期利率。
设,则铁(AB)=______.
假设系统中有三类互斥资源R1、R2和R3,可用资源数分别为10、5和3。在T0时刻系统中有P1、P2、P3、P4和P5五个进程,这些进程对资源的最大需求量和已分配资源数如表3—1所示,此时系统剩余的可用资源数分别为(27)。如果进程按(28)序列执行,那么
对于宿主型数据库语言SQL,DBMS常采用哪种方法来处理?
A、ItsarrangementinthebilingualEnglish-Chineseformanditsdetailedexplanatorynotes.B、Itstasteforpeopleofallkinds
最新回复
(
0
)