首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)Tα2=(a一1,一a,1)T分别是λ1,λ2所对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β0=(2,一5a,2a+1)T.试求a及λ0的值
A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)Tα2=(a一1,一a,1)T分别是λ1,λ2所对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β0=(2,一5a,2a+1)T.试求a及λ0的值
admin
2017-07-26
81
问题
A是三阶实对称矩阵,A的特征值是λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=(1,a+1,2)
T
α
2
=(a一1,一a,1)
T
分别是λ
1
,λ
2
所对应的特征向量,A的伴随矩阵A
*
有特征值λ
0
,λ
0
所对应的特征向量是β
0
=(2,一5a,2a+1)
T
.试求a及λ
0
的值.
选项
答案
设α
3
=(x
1
,x
2
,x
3
)
T
是A关于λ
3
所对应的特征向量,由于A是实对称矩阵,有α
1
,α
2
,α
3
两两正交,于是 [*] 由①解出a=1或a=一1. 若a=1,从②、③可得α
3
=(一4,1,1)
T
,此时α
1
=(1,2,2)
T
,α
2
=(,一1,1)
T
,β
0
=(2,一5,3)
T
.因为A关于λ的特征向量就是A
*
关于[*]的特征向量,现在β
0
不与任一个A的特征向量共线,说明风不是A的特征向量,a=1不合题意,舍去. 若a=一1,从②、③得α
1
=(1,0,2)
T
,α
2
=(一2,1,1)
T
,α
3
=(一2,一5,1)
T
,β
0
=(2,5,一1)
T
,那么Aα
3
=λ
3
α
3
,即Aβ
0
=λ
3
β
0
,又|A|=λ
1
λ
2
λ
3
=一2,有 λ
3
A
—1
β
0
=β
0
,即A
*
β
0
=[*]β
0
=2β
0
. 所以a=一1,λ
0
=2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IrH4777K
0
考研数学三
相关试题推荐
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
随机试题
公证机构经审查,认为申请人提供的证明材料真实、合法、充分,申请公证的事项真实、合法,向当事人出具公证书应当自受理公证申请之日起
血小板保存的最佳温度应为
系统性红斑狼疮最常见的死亡原因是
患者.男.52岁.右下中切牙4天来遇冷食痛.刺激去除后疼痛立即消失。检查见该牙近中边缘嵴略透暗色.探诊龋深。未发现穿髓孔。根据上述症状进行诊断应选用的检查方法是
A.木B.水C.金D.火E.土
当RLC串联电路发生谐振时,一定有:
手绘的建筑设计图纸原稿()
出版社利用大众传媒引导读者消费的方式有()等。
我国刑法中的共同犯罪是指()。
CooperationVersusCompetitionWhatiscompetition?Whatdoesitmeantocompete?Accordingtothedictionary,competition
最新回复
(
0
)