首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
admin
2016-10-26
64
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=kα
1
,Aα
2
=lα
1
+kα
2
,Aα
3
=lα
2
+kα
3
,l≠0,证明α
1
,α
2
,α
3
线性无关.
选项
答案
若k
1
α
1
+k
2
α
2
+k
3
α
3
=0,用A一KE左乘有 k
1
(A—kE)α
1
+k
2
(A—kE)α
2
+k
3
(A—kE)α
3
=0, 即 k
2
lα
1
+k
3
lα
2
=0, 亦即k
2
α
1
+k
3
α
2
=0. 再用A一KE左乘,可得k
3
α
1
=0. 由α
1
≠0,故必有k
3
=0,依次往上代入得k
2
=0及k
1
=0,所以α
1
,α
2
,α
3
线性无关.
解析
对k
1
α
1
+k
2
α
2
+k
3
α
3
=0,如何证明组合系数k
1
=k
2
=k
3
=0呢?要作恒等变形就应仔细分析已知条件,Aα
i
的条件其实就是
(A—kE)α
1
=0, (A—kE)α
2
=lα
1
, (A—kE)α
3
=lα
2
.
这启发我们应用A—kE左乘来作恒等变形.
转载请注明原文地址:https://www.kaotiyun.com/show/ILu4777K
0
考研数学一
相关试题推荐
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
设f(x)可导,求下列函数的导数:
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
行列式为f(x),则方程f(x)=0的根的个数为
幂级数x2n-1的收敛半径R=___________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量.
(2009年试题,19)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧.
设n为正整数,利用已知公式In=∫0π/2sinnxdx=∫0π/2cosnxdx=I*,其中求下列积分:Jn=∫0π/2sinnxcosnxdx;
随机试题
出现夏柯三联征的胆道疾病是
肺胀中痰浊壅肺证的治疗应选用
患者,男性,78岁,有溃疡病史反复发作20年,近2个月来出现胃脘痛,食后呕吐,明显消瘦,伴锁骨上淋巴结肿大,应首先考虑诊断为( )
城建税:附加税:财政收人
根据公司法律制度规定,有限责任公司股东会作出的下列决议中,必须经代表2/3以上表决权的股东通过的有()。
按照银行性质和职能划分,可分为()
国务院法制办属于国务院()。
下列关于文史知识的表述,有错误的一项是__________。
(复旦大学2013)甲乙两公司财务杠杆不一样,其他都一样。甲公司的债务资本和权益资本分别占50%和50%;乙公司债务资本和权益资本分别占40%和60%。某投资者有8%甲公司股票,根据无税MM理论,什么情况下投资者继续持有甲股票?()
Whatarethespeakersmainlydiscussing?
最新回复
(
0
)