首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
admin
2016-10-26
92
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=kα
1
,Aα
2
=lα
1
+kα
2
,Aα
3
=lα
2
+kα
3
,l≠0,证明α
1
,α
2
,α
3
线性无关.
选项
答案
若k
1
α
1
+k
2
α
2
+k
3
α
3
=0,用A一KE左乘有 k
1
(A—kE)α
1
+k
2
(A—kE)α
2
+k
3
(A—kE)α
3
=0, 即 k
2
lα
1
+k
3
lα
2
=0, 亦即k
2
α
1
+k
3
α
2
=0. 再用A一KE左乘,可得k
3
α
1
=0. 由α
1
≠0,故必有k
3
=0,依次往上代入得k
2
=0及k
1
=0,所以α
1
,α
2
,α
3
线性无关.
解析
对k
1
α
1
+k
2
α
2
+k
3
α
3
=0,如何证明组合系数k
1
=k
2
=k
3
=0呢?要作恒等变形就应仔细分析已知条件,Aα
i
的条件其实就是
(A—kE)α
1
=0, (A—kE)α
2
=lα
1
, (A—kE)α
3
=lα
2
.
这启发我们应用A—kE左乘来作恒等变形.
转载请注明原文地址:https://www.kaotiyun.com/show/ILu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
0
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
求下列有理函数不定积分:
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设随机变量X服从参数为(2,p)的二项分布,随机变量y服从参数为(3,p)的二项分布,若P丨x≥1丨=5/9,则P丨Y≥1丨=_________.
求不定积分csc3xdx.
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_________.
有一椭圆形薄板,长半轴为a,短半轴为b,薄板垂直立于水中,而其短半轴与水面相齐,求水对薄板的侧压力.
设n为正整数,利用已知公式In=∫0π/2sinnxdx=∫0π/2cosnxdx=I*,其中求下列积分:Jn=∫-11(x2-1)ndx.
随机试题
BX1—330型弧焊变压器怎样调整电流?
在中国,职工在企事业单位中享有当家做主的民主权利,主要通过_________来实现.
以下疾病中性粒细胞碱性磷酸酶积分不减低的是
下列有关抗恶性肿瘤药羟基脲的说法正确的是
小王即将在30天后取得国土资源部土地登记上岗资格证,那么在这段时间内,他()。
2013年某省下辖10个地市的商品房销售额(单位:亿元)分别为:1281307813492166195176181199这组数据的中位数是()亿元。
学生害怕在社交场合讲话,担心自己会因发抖、脸红、声音发颤、口吃而暴露自己的焦虑,觉得说话不自然,因而不敢抬头,不敢正视对方眼睛,这种心理状况是一种()。
“中国城市科学发展论坛暨2011城市评价报告发布会”在北京举行,发布的《2011中国城市发展综合评价报告》显示,位列2011中国城市科学发展综合排名前三名的三个城市分别是()。
关系模式R的码是R的规范化程度最高达到
InthesouthofSpain,therewasasmallvillagewhosepeoplewereveryjoyfulandlucky.Thechildrenplayedundertheshadeof
最新回复
(
0
)