首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为___________.
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为___________.
admin
2018-07-18
70
问题
设n阶矩阵A的秩为n一2,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为___________.
选项
答案
α
1
+k
1
(α
2
一α
1
)+k
2
(α
3
一α
1
),k
1
,k
2
为任意常数
解析
α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个线性无关的解,则α
2
一α
1
,α
3
一α
1
是Ax=0的两个解,且它们线性无关,又n—r(A)=2,故α
2
一α
1
,α
3
一α
1
是Ax=0的基础解系,所以Ax=b的通解为α
1
+k
1
(α
2
一α
1
)+k
2
(α
3
一α
1
),k
1
,k
2
为任意常数.
转载请注明原文地址:https://www.kaotiyun.com/show/I7k4777K
0
考研数学二
相关试题推荐
[*]
设区域D是由y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-1),(X,Y)服从区域D上的均匀分布.(1)求(X,Y)的密度函数;(2)求X,Y的边缘密度函数.
(2007年试题,24)设三阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,又α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A2一4A3+E,其中E为三阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)
微分方程y"+y=x2+1+sinx的特解形式可设为
求曲y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
假设.求A的所有代数余子式之和.
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:(1)若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)一f’(x0)(x—x0),当且仅当x=x0时等号成立;(2)若x1,x2,…,xn∈(a,b),且xi<xi
已知f(x)是周期为5的连续函数,它在x=0某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+a(x)其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
随机试题
我们把主存空间的地址编号称为主存储器的_________。
脱肛之脾虚气陷证,脱垂较重,不能自行回纳的者,应重用的药物是
根据《宪法》和相关法律,关于国家标志,下列哪些说法是正确的?()
欧盟的玩具安全标准较国内相关标准高,因此从欧盟进口的玩具,可不再向检验检疫机构报检。()
教师在课堂上通过展示实物、直观教具进行演示实验,使学生获得知识的方法称之为()。
按监督行为是否具有直接的法律效力,监督可分为直接监督和间接监督。()
共产党员如果敢于坚持真理,那么必须跟歪风邪气进行坚决的斗争。如果对错误的东西一味地偏袒、迁就,那么,这只能助长各种不正之风的恶性蔓延,因此( )
在SQL中,用【5】关键词消除重复出现的元组。
CONVERSATION2(Questions5-8)Thewomanispackingandleaving.How:by【L5】______.When:【L6】______.Towhere:【L7】______.Therel
Incontrast,anFrancisco【C1】______Japanofitscolonialempireandarmed【C2】______butsoughttocultivatereform【C3】______then
最新回复
(
0
)