首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
admin
2016-10-20
71
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
,x
2
∈[0,1],有
选项
答案
联系f(x
1
)-f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
-x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)-f(x
2
)|=|f’(ξ)(x
2
-x
1
)|=|f’(ξ)||x
2
-x
1
|<[*] 2)若x
2
-x
1
≥[*],当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
2
)-f(x
2
)|=|[f(x
1
)-f(0)]-[f(x
2
)-f(1)]| ≤|f(x
1
)-f(0)|+|f(1)-f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1-x
2
)| <x
1
+(1-x
2
)=1-(x
2
-x
1
)≤[*] ① 当x
1
=0且x
2
≥[*]时,有 |f(x
1
)-f(x
2
)|=|f(0)-f(x
2
)|=|f(1)-f(x
2
)|=|f’(η)(1-x
2
)|≤[*] ②当x
1
≤[*]且x
2
=1时,同样有 |f(x
1
)-f(x
2
)|=|f(x
1
)-f(1)|=|f(x
1
)-f(0)|=|f’(ξ)(x
1
-0)|≤[*] 因此对于任何x
1
,x
2
∈[0,1]总有|f(x
1
)-f(x
2
)|<[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HaT4777K
0
考研数学三
相关试题推荐
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
利用函数的凹凸性,证明下列不等式:
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
求下列参数方程所确定的函数的二阶导数d2y/dx2.设f〞(t)存在且不为零.
求二元函数u=x2-xy+y2在点(1,1)沿方向的方向导数及梯度,并指出u在该点沿哪个方向减少的最快?沿哪个方向u的值不变化?
设f(x)=|x|sin2x,则使导数存在的最高阶数n=()
随机试题
简述新中国金融机构体系的建立与发展所经历的阶段。
支原体肺炎的首选药是
在胸骨左缘第3、4肋间触及收缩期震颤,应考虑为()
关于胰岛素细胞分泌的错误描述是
某居民企业2015年经税务机关核准的应纳税所得额为一100万元。2016年度生产经营情况如下:(1)取得商品销售收入5000万元,特许权使用费收入200万元;(2)全年发生销售成本2200万元,税金及附加320万元;(3)
某小公司有15名员工,其中市场部6人、技术部6人、综合部3人,从中任意选取3人,其中恰好有市场部、技术部、综合部各1人的概率是()。
企业集团总部部门定位的方法不包括()。
形式主义美学观特别强调音乐作品的形式属性,下列哪一种阐述体现了该观点?()
越南的现代国服称为()。
Realinnovationisadyingart.It’struethatcreativity—thebusinessofthinkingupnewideas—isfarfromdead,butit’sgetti
最新回复
(
0
)