首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
admin
2016-10-20
90
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
,x
2
∈[0,1],有
选项
答案
联系f(x
1
)-f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
-x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)-f(x
2
)|=|f’(ξ)(x
2
-x
1
)|=|f’(ξ)||x
2
-x
1
|<[*] 2)若x
2
-x
1
≥[*],当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
2
)-f(x
2
)|=|[f(x
1
)-f(0)]-[f(x
2
)-f(1)]| ≤|f(x
1
)-f(0)|+|f(1)-f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1-x
2
)| <x
1
+(1-x
2
)=1-(x
2
-x
1
)≤[*] ① 当x
1
=0且x
2
≥[*]时,有 |f(x
1
)-f(x
2
)|=|f(0)-f(x
2
)|=|f(1)-f(x
2
)|=|f’(η)(1-x
2
)|≤[*] ②当x
1
≤[*]且x
2
=1时,同样有 |f(x
1
)-f(x
2
)|=|f(x
1
)-f(1)|=|f(x
1
)-f(0)|=|f’(ξ)(x
1
-0)|≤[*] 因此对于任何x
1
,x
2
∈[0,1]总有|f(x
1
)-f(x
2
)|<[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HaT4777K
0
考研数学三
相关试题推荐
[*]
[*]
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
证明[*]
求下列曲面的面积:(1)平面3x+2y+z=1被椭圆柱面2x2+y2=1截下的部分;
计算下列极限:
证明下列导数公式:(1)(cotx)ˊ=-csc2x;(2)(cscx)ˊ=-cotx·cscx;
随机试题
A.胺类激素B.肽类激素C.蛋白质激素D.类同醇激素甲状腺激素是
分泌性腹泻的腹痛特征是()
根据《招标投标法实施条例》,潜在投标人或者其他利害关系人对资格预审文件有异议的,应当在提交资格预审申请文件截止时间()日前提出。招标人应当自收到异议之日起()日内作出答复。
背景资料:某公司承接了某城市道路的改扩建工程。工程中包含一段长240m的新增路线(含下水道200m)和一段长220m的路面改造(含下水道200m),另需拆除一座旧的人行天桥,新建一座立交桥。工程位于城市繁华地带,建筑物多,地下管网密集,交通量大。
对于闭式细水雾系统的联动试验可利用()进行模拟。
根据个人所得税的有关规定,两个以上纳税人共同取得同一项目收入的,其个人所得税的计税方法为()。
下列反应中氯元素既表现氧化性又表现还原性的是()。
从严格的意义上说,中国的改革并不是一个纯粹的经济问题,只不过在经济、政治、社会、文化这个大系统中经济的改革走在了前列。但随着改革的深入,随着改革走入中期,经济改革超前而其他方面的改革滞后所造成的社会心理和社会道德的差异,己经开始教育我们了。这段话
网络管理员使用DHCP服务器对公司内部主机的IP地址进行管理。在DHCP客户机上执行“ipeonfig/all”得到的部分信息如图(a)所示,该客户机在进行地址续约时捕获的其中1条报文及相关分析如图(b)所示。请分析图中的信息,补充图(b)中空白处的内容。
Toremaincompetitiveintheinternationalmarketplace,U.S.industrieshaverecognizedthattheymustattractthebrightest,m
最新回复
(
0
)