首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
admin
2012-03-22
67
问题
已知向量组(I):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
4
,α
5
.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为r(I)=r(II)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,因此α
4
可由α
1
,α
2
,α
3
线性表出,设为α
4
=lα
1
+lα
2
+lα
3
. 若k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=0, 即(k
1
-l
1
k
4
)α
1
+(k
2
-l
2
k
4
)α
2
+(kα
3
-l
3
k
4
4)α
3
+k
4
α
5
=0, 由于r(Ⅲ)=4,即α
1
,α
2
,α
3
,α
5
线性无关.故必有 解出k
4
=0,k
3
=0,k
2
=0,k
1
=0. 于是α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HNF4777K
0
考研数学三
相关试题推荐
1992年1月18日至2月21日,邓小平先后视察武昌、深圳、珠海、上海等地,发表重要谈话,提出了一系列重要论断,如社会主义本质是解放生产力,发展生产力,消灭剥削,消除两极分化,最终达到共同富裕;“三个有利于”标准;社会主义可以搞市场经济;革命是解放生产力,
据媒体报道,美国哥伦比亚大学的社会学家利用互联网技术做了一次实验,证明只要通过“电子邮件的6次信息接力”,一个人就可以同世界上任何一个陌生人联系上。这表明
社会主义社会的基本矛盾是生产关系和生产力之间的矛盾、上层建筑和经济基础之间的矛盾,是非对抗性的矛盾。解决这一矛盾的途径是()
设,试用定义证明f(x,y)在点(0,0)处可微分.
求下列隐函数的指定偏导数:
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
有一下凸曲线L位于xOy面的上半平面内,L上任一点M处的法线与x轴相交,其交点记为B,如果点M处的曲率半径始终等于线段MB之长,并且L在点(1,1)处的切线与y轴垂直,试求L的方程.
求下列微分方程的通解:(1)y〞-2yˊ=0;(2)y〞-3yˊ+2y=0;(3)y〞+4y=0;(4)y〞-4yˊ+5y=0;(5)y〞-6yˊ+9y=0;(6)y〞+2yˊ+ay=0;(7)y〞+6y〞+10yˊ=0;
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
随机试题
在平民与贵族的斗争中产生的国家是()
A.人参B.干姜C.附子D.黄芪E.当归
卵巢肿瘤蒂扭转最早出现的典型的临床表现是
中标通知书发出()d内双方签订合同文件。
购买初始资产组合后,不管资产相对价值发生怎样的变化,始终长期持有这种组合的投资方式是()。
检察机关依法对公安机关执行刑事判决、裁定的活动进行监督,发现有违法情形的有权依法提出纠正意见。()
你的处长调到一个新部门主持工作。处长让你过去负责一个项目,并且让原部门的一位同事配合你的工作。但是这个同事推三阻四不配合,你怎么办?
下列字符中,其ASCII码值最大的是
Ididn’tgototheparty,butIdowishI______there.
WhenRobertoFelizcametotheUSAfromtheDominicanRepublic,heknewonlyafewwordsofEnglish.Educationsoonbecamea【S1】
最新回复
(
0
)