首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为__
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为__
admin
2018-08-22
84
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若
β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,
则Ax=β的通解为___________.
选项
答案
[*]k
1
,k
2
为任意常数
解析
由
β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,
可知
均为Ax=β的解,故
均为Ax=0的解.
由于α
1
,α
2
线性无关,可知r(A)≥2.又由于Ax=0有两个线性无关的解β
1
一β
2
,β
2
一β
3
,可知Ax=0的基础解系中至少含有两个向量,也即4一r(A)≥2,即r(A)≤2.
综上,r(A)=2,Ax=0的基础解系中含有两个线性无关的向量,故β
1
一β
2
,β
2
一β
3
即为Ax=0的基础解系.则Ax=β的通解为
k
1
,k
2
为任意常数.
转载请注明原文地址:https://www.kaotiyun.com/show/HGj4777K
0
考研数学二
相关试题推荐
设A是n阶正定矩阵,证明:|E+A|>1.
设区域D由x=0,y=0,x+y=,x+y=1围成,若I1=[ln(x+y)]3dxdy,I2=(x+y)3dxdy,I3=sin3(x+y)dxdy,则()
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设,求f(x)的间断点并判断其类型.
求微分方程的通解.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数,若f(a)<0,则在区间内方程f(x)=0的实根个数为()
设函数φ(x)=∫0sinxf(tx2)dt,其中f(x)是连续函数,且f(0)=2,求φ’(x).
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
设则必有()
随机试题
最可能的月龄是第一个条件反射何时出现
关于卧位及翻身的论述,哪项是对的()。
房屋面积测算的内容不包括()。
某矿山企业开采铝土矿和铅锌矿,2020年4月该企业销售铝土矿原矿15万吨、铅锌矿精矿10万吨。铝土矿原矿不含税单价为150元/吨,铅锌矿精矿不含税单价为16500元/吨。铝土矿原矿资源税税率为6%,铅锌矿精矿资源税税率5%。该企业当月应纳资源税(
教育研究方法中使用频率最高的是()。
Notsolongago,itwasthestuffofnightmares:youpickupthelandlinetelephoneandthere’snodialingtone.Nothing.Theph
下列______方式不能在Access中创建和使用。
以下程序的输出结果是______。#defineM(x,y,z)x*y+zmain(){inta=1,b=2,c=3;printf("%d\n",M(a+b,b+c,c+a));}
IsCollegeReallyWorththeMoney?TheRealWorldEsteGriffithhaditallfiguredout.WhenshegraduatedfromtheUniversit
ShoppinghabitsintheUnitedStateshavechangedgreatlyinthelastquarterofthe20thcentury.【C1】______inthe1900smostAm
最新回复
(
0
)