首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(χ)dχ≥k∫01f(χ)dχ.
设f(χ)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(χ)dχ≥k∫01f(χ)dχ.
admin
2019-08-12
39
问题
设f(χ)在[a,b]上连续且单调减少.证明:当0<k<1时,∫
0
k
f(χ)dχ≥k∫
0
1
f(χ)dχ.
选项
答案
∫
0
k
f(χ)dχ-k∫
0
1
f(χ)dχ=∫
0
k
f(χ)dχ-k[∫
0
k
f(χ)dχ+∫
k
1
f(χ)dχ] =(1-k)∫
0
k
f(χ)dχ-k∫
k
1
f(χ)dχ=k(1-k)[f(ξ
1
)-f(ξ
2
)] 其中ξ
1
∈[0,k],ξ
2
∈[k,1].因为0<k<1且f(χ)单调减少, 所以∫
0
k
f(χ)dχ-k∫
0
1
f(χ)dχ=k(1-k)[f(ξ
1
)-f(ξ
2
)]≥0,故∫
0
k
f(χ)dχ≥k∫
0
1
f(χ)dχ.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/GeN4777K
0
考研数学二
相关试题推荐
求数列极限ω=.
曲线y=的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设有向量组(Ⅰ):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T.问a取何值时,(Ⅰ)线性相关?当(Ⅰ)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为__
计算下列反常积分(广义积分)的值:
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
随机试题
数据库中有“商品”表如下:执行SQL命令:SELECT*FROM商品WHERE单价(SELECT单价FROM商品WHERE商品号:"0112");查询结果的记录数是()。
嘌呤核苷酸的分解代谢终产物是()。
患儿女,12岁。因流行性脑脊髓膜炎人院。患者突然出现昏迷、潮式呼吸、一侧瞳孔扩大,应立刻
引起低血容量性休克的原因一般不包括
风疹与麻疹的主要鉴别点是
黏性土由可塑状态转入流动状态的界限含水率被称为:
材料一1870年代初的南部,虽然也不时出现针对黑人的种族暴行,但在日常生活中,黑人基本能与白人同车船、共饭桌、游公园。但这种情况并没有持续多久。随着前白人奴隶主“重新夺回”南部各州政权,许多州在维护社会秩序名义下,制定了各种法律,规定黑人与白人必
有关主动攻击和被动攻击,下列说法错误的是()。
Migrant(移民的)WorkersInthepasttwentyyears,therehasbeenanincreasingtendencyforworkerstomovefromonecountrytoa
Whatisthepassagemainlyabout?Whichofthefollowingisnotmentionedasapossiblecauseofatradeimbalance?
最新回复
(
0
)