首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
admin
2019-03-23
62
问题
设四元线性方程组(1)为
又已知齐次线性方程组(2)的通解为k
1
(0,1,1,0)
T
+k
2
(—1,2,2,1)
T
。
问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
选项
答案
令C
1
(0,0,1,0)+C
2
(—1,1,0,1)=k
1
(0,1,1,0)+k
2
(—1,2,2,1)。则有 [*] 那么同解方程组为[*]令k=C
2
,则方程组的解为k(—1,1,1,1)
T
,即方程组(1)、(2)的所有非零公共解是k(—1,1,1,1)
T
,k≠0。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/GXV4777K
0
考研数学二
相关试题推荐
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
已知方程组总有解,则λ应满足_________.
证明:与基础解系等价的线性无关的向量组也是基础解系.
已知a,b,c不全为零,证明方程组只有零解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
判断下列函数的单调性:
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
已知某企业的总收益函数为R(Q)=26Q一2Q2一4Q3,总成本函数为C(Q)=8Q+Q2,其中Q表示产品的产量.求边际收益函数、边际成本函数以及利润最大时的产量.
随机试题
据《素问.标本病传论》,下列情况当“治其标”的是
患者,女,62岁。肺癌晚期,骨转移。化疗后食欲极差,腹胀痛,夜间不能入睡。近3天常有少量粪水从肛门排出,有排便冲动,但不能排出大便。患者最可能出现的护理问题是()。
下列方剂中,患者症见胸脘痞满,不思饮食,适用的是()。
单位(子单位)工程质量观感质量检查记录是由()组织参加验收的各方代表共同实地检查。
关于资格预审文件的说法,正确的有()
下列各项中,属于有限责任公司董事会行使的职权有()。
由于存款业务量巨大,故存款合同一般采用()。
张教授:在西方经济萧条时期,由汽车尾气造成的空气污染状况会大大改善,因为开车上班的人大大减少了。李工程师:情况恐怕不是这样。在萧条时期买新车的人大大减少。而车越老,排放的超标尾气造成的污染越严重。以下哪项最为准确地概括了李工程师的反驳所运用的
下列程序段的执行结果为()。x=Int(Rnd+4)SelectCasexCase5:Print"AClass"Case4:Print"BClass"Case3:Print"CClass"CaseElse:Print"DCl
[A]bed[B]chair[C]radio[D]desk[E]watch[F]telephone[G]televisionItismadeforyoutosleepin.
最新回复
(
0
)