首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
admin
2019-03-23
76
问题
设四元线性方程组(1)为
又已知齐次线性方程组(2)的通解为k
1
(0,1,1,0)
T
+k
2
(—1,2,2,1)
T
。
问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
选项
答案
令C
1
(0,0,1,0)+C
2
(—1,1,0,1)=k
1
(0,1,1,0)+k
2
(—1,2,2,1)。则有 [*] 那么同解方程组为[*]令k=C
2
,则方程组的解为k(—1,1,1,1)
T
,即方程组(1)、(2)的所有非零公共解是k(—1,1,1,1)
T
,k≠0。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/GXV4777K
0
考研数学二
相关试题推荐
A=,r(A)=2,则()是A*X=0的基础解系.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
证明3阶矩阵
证明:r(A)=r(ATA).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设函数f(x,y)=讨论f(x,y)在(0,0)点的可微性.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
随机试题
血管内给药途径的药代动力学过程不包括()。
心肌肥大是心脏持久而有效的代偿方式。
反映企业盈利能力大小的指标有()。
下列各项不属于证券业从业人员的是( )。
古时的“四时”,是指()。
下列关于类、对象、属性和方法的叙述中,错误的是()。
以下是普通高中课程标准实验教科书《化学1》(苏教版)专题2第一单元“氯气的生产原理”部分内容。氯气的生产原理从海水晒盐得到食盐,除去杂质后,不仅可作调料,还可作为工业原料。在19世纪,科学家发明了电解食盐水制取氯气(chlorinegas)的方法,为
循环经济
Paulisan______worker,andrarelydoeswellinexaminations.Howeverheoftenrefusesourhelp.
Toomuch______toX-rayscancauseskinbums,cancerorotherdamagetothebody.
最新回复
(
0
)