首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是4元非齐次线性方程组aX=B的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x= ( )
设α1,α2,α3是4元非齐次线性方程组aX=B的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x= ( )
admin
2016-04-11
105
问题
设α
1
,α
2
,α
3
是4元非齐次线性方程组aX=B的3个解向量,且秩(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
,c表示任意常数,则线性方程组Ax=b的通解x= ( )
选项
A、
B、
C、
D、
答案
C
解析
由Ax=b的解的结构知关键在于求出Ax=0的基础解系,由于Ax=0的基础解系所含解向量个数为4一秩(A)=4—3=1,因此Ax=0的任意一个非零解都可作为Ax=0的基础解系.易知ξ=2α
1
一(α
2
+α
3
)=(2,3,4,5)
T
是Ax=0的一个非零解,故ξ可作为Ax=0的基础解系,所以,Ax=b的通解为x=α
1
+cξ.只有选项(C)正确.
转载请注明原文地址:https://www.kaotiyun.com/show/GNw4777K
0
考研数学一
相关试题推荐
设有微分方程y’-2y=ψ(x),其中ψ(x)=求在(-∞,+∞)内连续的函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是()。
设函数其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性。
设函数f(x)可导且0≤f’(x)≤,对任意的xn,作xn+1=f(xn)(n=0,1,2,…)证明:存在且满足方程f(x)=x.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’(1)≠1,则=________.
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点.(Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
设面密度为1的立体Ω由不等式≤z≤1表示,求Ω对直线L:x=y=z的转动惯量.
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
随机试题
进货业务中采用“送货制”的业务程序,“收货单”的流转程序是
关于胸外心脏按压,下列不正确的是()
急性重度酒精中毒的死因
某评估机构在接受委托对位于某市两宗用途分别为工业、住宅用地的国有土地进行评估时。估价师收集到如下资料:①作为地区重要的政治、经济、文化中心和交通枢纽城市,该市进入21世纪后历年GDP平均增长率达12%,城镇居民可支配收入平均增长率为5%;②2005年—
我国电力系统中性点直接接地方式一般用在()及以上网络中。
安装工程中,常用来测量标高的测量仪器是()。
贷款人逾期不归还担保贷款的,商业银行依法享受的权利不包括()。
对于运输产品来说,其整体构成包括三个部分,运输企业人员的精神风貌(服装、态度等)属于其中的()。
心理咨询师掌握心理异常症状,是为了()
Oneofthemostsuccessfulcommercialproductseverlaunchedissaidtohavecomeaboutastheresultofamistake.In1896,by
最新回复
(
0
)