首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,且∫0xtf(2x-t)dt=arctanx2.已知f(1)=1,求∫12f(x)dx的值.
设函数f(x)连续,且∫0xtf(2x-t)dt=arctanx2.已知f(1)=1,求∫12f(x)dx的值.
admin
2019-05-08
95
问题
设函数f(x)连续,且∫
0
x
tf(2x-t)dt=
arctanx
2
.已知f(1)=1,求∫
1
2
f(x)dx的值.
选项
答案
令u=2x-t,则t=2x-u,dt=-du. 当t=0时,u=2x;当t=x时,u=x.故 ∫
0
x
tf(2x-t)dt=-∫
2x
x
(2x-u)f(u)du=2x∫
x
2x
f(u)du-∫
x
2x
uf(u)du, 由已知得2x∫
x
2x
f(u)du-∫
x
2x
uf(u)du=[*]arctanx
2
,两边对x求导,得 2∫
x
2x
f(u)du+2x[2f(2x)-f(x)]-[2xf(2x).2-xf(x)]=[*], 即 2∫
x
2x
f(u)du=[*]+xf(x). 令x=1,得2∫
1
2
f(u)du=[*]].故∫
1
2
f(x)dx=[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/GEJ4777K
0
考研数学三
相关试题推荐
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设总体X的概率密度函数为f(x;θ)=其中0<0<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=________;θ的矩估计量
设总体X服从正态分布N(0,σ2),X1,X2,…,X10是取自总体X的简单随机样本,统计量(1<i<10)服从F分布,则i等于()
设随机变量X的概率密度为f(x)=令随机变量(Ⅰ)求Y的分布函数;(Ⅱ)求概率P{X≤Y}。
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(z)dx=______.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y′+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
(2009年)使不等式>lnx成立的x的范围是()
随机试题
在我国现代学制沿革中,最早明令废除受教育权性别和职业限制的学制是()
患者女性,30岁,因尿血反复发作2个月来诊,尿色淡红,无尿频、尿急,有轻度尿痛涩滞感,腰膝酸软,五心烦热,舌红苔少,脉细数。此病人所患为
评价颌骨骨折复位成功的标准是
不属于人工自动免疫的制剂是()。
建设项目选址意见书的目的是()。
在通常情况下,适宜采用较高负债比例的企业发展阶段是()。
港珠澳大桥是世界最长的跨海大桥。读港珠澳大桥示意图港珠澳大桥在修建过程中可能遇到的困难是()。
某市公安机关对一起抢劫案件侦查终结移送该市人民检察院审查起诉,该市人民检察院决定不起诉,该市公安机关可以要求复议,如果意见不被接受,可以向上一级人民检察院提请复核。()
Youarewhatyoueat,orsothesayinggoes.ButRichardWrangham,ofHarvardUniversity,believesthatthisistrueinamorep
数据结构分为逻辑结构和存储结构,循环队列属于______结构。
最新回复
(
0
)