首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
admin
2016-09-13
64
问题
在球面x
2
+y
2
+z
2
=5R
2
(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式
(a>0,b>0,c>0).
选项
答案
作拉格朗日函数 L(x,y,z,λ)=lnx+lny+31nz+λ(x
2
+y
2
+z
2
-5R
2
), 并令 [*] 由前3式得x
2
=y
2
=[*],代入第4式得可疑点(R,R,[*]R),因xyz
3
在有界闭集x
2
+y
2
+z
2
=5R
2
(x≥0,y≥0,x≥0)上必有最大值,且最大值必在x>0,y>0,z>0取得,故f=lnxyz
3
在x
2
+y
2
+z
2
=5R
2
也有最大值,而(R,R,[*]R)唯一,故最大值为f(R,R,[*]R)=ln(3[*]R
5
),又lnx+1ny+31nx≤ln(3[*]R
5
),xyz
3
≤3[*]R
5
,故x
2
y
2
z
6
≤27R
10
. 令x
2
=a,y
2
=b,z
2
=c,又知x
2
+y
2
+z
2
=5R
2
,则abc
3
≤27([*])
5
(a>0,b>0,c>0).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FxT4777K
0
考研数学三
相关试题推荐
[*]
a2
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
证明[*]
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
一架巡逻直升机在距地面3km的高度以120km/h的常速沿着一条水平笔直的高速公路向前飞行,飞行员观察到迎面驶来一辆汽车.通过雷达测出直升机与汽车间的距离为5km,并且此距离以160km/h的速率减少.试求出汽车行进的速度.
设∑是空间有界闭区域Ω的整个边界曲面,u(x,y,z),v(x,y,z)∈C(2)(Ω),分别表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数,证明:
求二元函数u=x2-xy+y2在点(1,1)沿方向的方向导数及梯度,并指出u在该点沿哪个方向减少的最快?沿哪个方向u的值不变化?
随机试题
信托投资公司经营业务,应当遵守的原则有()。
三型观测线四型观测线
毒蛇咬伤风毒轻证毒蛇咬伤风毒重证
下列适合采用多栏式明细账核算的是()。
某银行由于短期的资金周转需要,可以采用的借款方式有()。[2009年10月真题]
资本监管的具体措施包括()
(2015年)(改编)在不涉及补价的情况下,下列各项交易事项中,属于非货币性资产交换的是()。
旅行社是从事()旅游者等活动的企业法人。
如何理解道德是一种特殊的规范调节方式?
In1959,Hawaiibecamethefiftiethstateintheunion.【C1】________CongresssofarawayinWashingtonD.C.,howdoHawaiiansg
最新回复
(
0
)