首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 (Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解; (Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
设线性方程组 (Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解; (Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
admin
2018-01-26
82
问题
设线性方程组
(Ⅰ)证明当a
1
,a
2
,a
3
,
4
两两不相等时,方程组无解;
(Ⅱ)设a
1
=a
3
=k,a
2
=a
4
=-k(k≠0),并且β
1
=(-1,1,1)
T
和β
2
=(1,1,-1)
T
是两个解。求此方程组的通解。
选项
答案
(Ⅰ)增广矩阵的行列式是一个范德蒙德行列式,其值等于 [*] =(a
2
-a
1
)(a
3
-a
1
)(a
4
-a
1
)(a
3
-a
2
)(a
4
-a
2
)(a
4
-a
2
), 于是,当a
1
,a
2
,a
3
,a
4
两两不同时,增广矩阵可逆,秩为4,而系数矩阵的秩为。因此,方程组无解。 (Ⅱ)由题设条件,则此时方程组为 [*] β
1
和β
2
都是特解,β
1
-β
2
=(-2,0,2)
T
是导出组的一个非零解。由β
1
(或β
2
)是解看出k≠0,从而系数矩阵 [*] 的秩为2,因此可知导出组的基础解系由一个非零向量构成,则β
1
-β
2
是导出组的基础解系。于是通解为 β
1
+c(β
1
-β
2
),c为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FSr4777K
0
考研数学一
相关试题推荐
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
已知y=y(x)是微分方程(x2+y2)dy=dx—dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).(1)证明:;(2)证明:均存在.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
证明:r(A+B)≤r(A)+r(B).
已知r(A)=r1,且方程组Ax=α有解r(B)=r2,=R(B)=R2无解,设A=[α1,α2,…,αN],B=[β1β2……βn],且r(α1,α2……αn,β1β2……βn,β)=r,则()
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设A为m×N实矩阵,e为N阶单位矩阵.已知矩阵b=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设随机变量X和Y均服从,且D(X+Y)=1,则X与Y的相关系数ρ=___________.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
随机试题
OnedayMrs.Greentookseveralpairsofshoestoashoemakertoberepaired.Afterafewdaysshepickedthemupandputthema
化脓性关节炎后期关节已有破坏与增生。强直已不可避免时,最恰当的治疗方法是
血液与组织液之间进行物质交换的场所为
抗人球蛋白直接反应阳性,应考虑为
特种设备在投入使用前或者投入使用后______日内,特种设备使用单位应当向直辖市或者设区的市的特种设备安全监督管理部门______。登记标志应当置于或者附着于该特种设备的显著位置。
瓦楞纸板有各种瓦楞形状.其中什么形状能适应大多数瓦楞包装的要求,并使用较为普遍()
某企业2015年12月31日的流动资产为1480万元,流动负债为580万元,长期负债为5400万元,所有者权益总额为4200万元。该企业2015年的营业收入为5000万元,销售净利率为10%,总资产周转次数为1.2次,按照平均数计算的权益乘数为2.4,净利
最近的一项研究指出:“适量食用巧克力对心脏有益。”研究人员对1000名大学生进行调查,发现那些经常食用适量巧克力的人,其患心脏病的可能性较基本不食用的人低。因此,研究人员发现了食用巧克力与心脏病之间的联系。以下哪项如果为真,最不可能削弱上述论证的结论?(
Alltypesofstressstudy,whetherunderlaboratoryorreal-lifesituations,studymechanismsforincreasingthearousallevelo
Walking—likeswimming,bicyclingandrunning—isanaerobicexercise,【C1】______buildsthecapacityforenergyoutputandphysica
最新回复
(
0
)