首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
曲面x2+cos(xy)+yz+x=0在点(0,1,一1)处的切平面方程为___________。
曲面x2+cos(xy)+yz+x=0在点(0,1,一1)处的切平面方程为___________。
admin
2018-05-25
44
问题
曲面x
2
+cos(xy)+yz+x=0在点(0,1,一1)处的切平面方程为___________。
选项
答案
x一y+z=一2
解析
令F(x,y,z)=x
2
+cos(xy)+yz+x,则曲面的法向量
n={F’
x
,F’
y
,F’
z
}={2x一ysin(xy)+1,一xsin(xy)+z,y},
则曲面x
2
+cos(xy)+yz+x=0在点(0,1,一1)处的法向量为n={1,一1,1},故切平面方程为
(x一0)一(y一1)+(z+1)=0,即x一y+z=一2。
转载请注明原文地址:https://www.kaotiyun.com/show/FLg4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A由上、下限知,积分区域D=D1∪D2={(x,y)|0≤x≤1,0≤y≤1}∪{(x,y)|lny≤x≤1,l≤y≤e}={(x,y)|0≤y≤ex,0≤x≤1},
设点M(ξ,η,ζ)是椭球面上第一象限中的点,S是该椭球面在点M处的切平面被三个坐标面所截得的三角形的上侧.求点(ξ,η,ζ)使曲面积分为最小,并求此最小值.
设x>0,证明:且仅在x=1处等号成立.
设微分方程xy’+2y=2(ex一1).(Ⅰ)求上述微分方程的通解,并求存在的那个解(将该解记为y0(x)),以及极限值(Ⅱ)补充定义使y0(x)在x=0处连续,求y’00(x),并请证明无论x≠0还是x=0,y’0(x)均连续,并请写出y’0(x)的
设e-x2是f(x)的一个原函数,则∫0+∞x3f"(x)dx=________.
设常数a>0,曲线上点(a,a,a)处的切线方程是________.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cχ=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cχ=0的基础解系.
函数u=在点M0(1,1,1)处沿曲面2z=χ2+y2在点M0处外法线方向n的方向导数=________.
下列三个命题①设的收敛域为(-R,R),则,的收敛域为(-R,R);②设幂级数在χ=-1条件收敛,则它的收敛半径R=1。③设幂级数的收敛半径分别为R1,R2,则(an+bn)χn的收敛半径R=min(R1,R2)中正确的个数是
已知y=y(x)是微分方程(x2+y2)dy=dx-dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).证明:
随机试题
一个1岁小儿高热,面色苍白,气急,肺部体症不明显,X线检查显示:双肺布满大小相等,密度相同,境界分明,状如粟粒的阴影,最可能的诊断是
妊娠高血压综合征的发病与血浆内皮素的关系,下列哪项是正确的:
对减慢窦性心动过速最佳的药物是
A.毛果芸香碱B.阿托品C.新斯的明D.肾上腺素E.乙酰胆碱青光眼患者禁用的是
根据NEC《工程施工合同》,当项目经理认为承包人未就使其受到损害的事件发生过早期警告,则关于承包人合同价款补偿的说法正确的是()。
称重记账法的注意事项包括()
下列说法有误的是()。
有四个不同的自然数,它们当中任意两个数的和都是2的倍数,任意三个数的和都是3的倍数,则这四个数的和的最小值为()。
[A]Analyzingyourowntaste[B]Beingcautiouswhenexperimenting[C]Findingamodeltofollow[D]Gettingthefinallookabsolute
【B1】【B4】
最新回复
(
0
)