首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. 证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设y=f(x)为区间[0,1]上的非负连续函数. 证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
admin
2018-05-23
64
问题
设y=f(x)为区间[0,1]上的非负连续函数.
证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
选项
答案
S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=一∫
1
c
f(t)dt,即证明S
1
(c)=S
2
(c)或cf(c)+∫
1
c
f(t)dt=0,令φ(x)=x∫
1
x
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1)使得φ
’
(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FIg4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-(i=1,2,…,n)求P{Y1+Yn≤0}
椭球面∑1是椭圆绕x轴旋转而成,圆锥面∑2是由过点(4,0)且与椭圆相切的直线绕x轴旋转而成求∑1及∑1的方程;
设A,B为n阶方阵,令A=(α1,α2,…,αn),B=(β1,β2…,βn),则下列命题正确的是()
设二次型f(x1,x2,x3)=5x12+ax22+3x32-2x1x2+6x1x3-6x2x3的矩阵合同于用正交变换法化二次型f(x1,x2,x3)为标准形
设随机变量X和Y的概率分布分别为P(X2=Y2)=1(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求Z=XY的概率分布;(Ⅲ)求x与y的相关系数ρXY.
某闸门的形状与大小如右图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高^应为多少m(米)?
下列广义积分中发散的是
设z=z(z,y)具有二阶连续偏导数,试确定常数a与b,使得经变换u=x+ay,υ=x+by,可将z关于x、y的方程 化为z关于u、υ的方程并求出其解z=z(z+ay,x+by).
设函数f(χ)连续,除个别点外二阶可导,其导函数y=f′(χ)的图像如图(1),令函数y=f(χ)的驻点的个数为P,极值点的个数为q,曲线y=f(χ)拐点的个数为r,则
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,fy’(x,0)=x,则f(x,y)=________.
随机试题
正常牙髓对温度刺激的耐受阈为
与致病性无关的细菌合成代谢产物是
A.鳞状化生B.角化珠C.胶样小体D.角质栓塞E.子囊鳞状细胞癌
时先生,现年32,某公司业务经理,年薪5万元。妻子冯女士,某公司文秘,年薪4万元。女儿两岁。二人结婚三年但是积蓄不多,年结余大致在2万元左右,女儿马上要上幼儿园,预计支出会进一步增加。二人结婚时购置新房一套。除社保外,二人没有其他商业保险。以下保险产品
从事非营利性的社会各项公益事业的法人是()。
张某、李某、丙有限责任公司和丁有限责任公司共同出资设立了A有限合伙企业,丙、丁两家公司为有限合伙人。该企业在经营过程中出现以下问题:(1)丙公司认为自己出资最多,应当成为合伙企业事务执行人,但张某和李某不同意,最后决定由张某担任合伙企业事务执行人
下列动物行为中,均属于先天性行为的一组是()。
公开发行新股必须经国务院证券监督管理机构核准。()
市城市规划和自然资源局批准建设的居住小区整体结构设计违反了国家的有关法律规定,给原告甲村的利益造成严重损害,但是房屋及其配套设施等已经建成交付使用。撤销批准建设的行政行为将会给公共利益造成重大损失,人民法院应当如何处理?()
若(X,Y)服从二维正态分布,则:①X,Y一定相互独立;②若ρxy=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任意线性组合服从一维正态分布。上述几种说法中正确的是().
最新回复
(
0
)