首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)=f(x0)=hf’(x0+θh),(0<θ<1).求证:
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)=f(x0)=hf’(x0+θh),(0<θ<1).求证:
admin
2021-11-09
54
问题
设f(x)在(x
0
-δ,x
0
+δ)有n阶连续导数,且f
(k)
(
0
)=0,k=2,3,…,n-1;f
(n)
(x
0
)≠0.当0<|h|<δ时,f(x
0
+h)=f(x
0
)=hf’(x
0
+θh),(0<θ<1).求证:
选项
答案
这里m=1,求的是f(x
0
+h)-f(x
0
)=hf’(x
0
+θh)(0<θ<1)当h→0时中值θ的极限.为解出θ,按题中条件,将f’(x
0
+θh)在x=x
0
展开成带皮亚诺余项的n-1阶泰勒公式得 f’(x
0
+θh)=f’(x
0
)+f’’(x
0
)θh+[*]f
(3)
(x
0
)(θh)
2
+…+[*]f
(n)
(x
0
)(θh)
n-1
+o(h
n-1
) =f’(x
0
)+[*]f
(n)
(x
0
)(θh)
n-1
+o(h
n-1
)(h→0), 代入原式得 (x
0
+h)-f(x
0
)=hf’(x
0
)+[*]f
(n)
(x
0
)θ
n-1
h
n
+o(h
n
) ① 再将f(x
0
+h)在x=x
0
展开成带皮亚诺余项的n阶泰勒公式 f(x
0
+h)-f(x
0
)=f’(x
0
)h+…+[*]f
(n)
(x
0
)h
b
+o(h
n
) =f’(x
0
)h+[*]f
(n)
(x
0
)h
n
+o(h
n
)(h→0), ② 将②代入①后两边除以h
n
得 [*] 令h→0,得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Ery4777K
0
考研数学二
相关试题推荐
求二元函数f(χ,y)=χ3-3χ2-9χ+y2-2y+2的极值.
∫0+∞χ7dχ=_______.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,α2+α3=,求方程组AX=b的通解.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
设f(χ)二阶可导,f(1)=0,令φ(χ)=χ2f(χ),证明:存在ξ∈(0,1),使得φ〞(ξ)=0.
曲线y=的斜渐近线为_______.
设二次型的正、负惯性指数都是1.计算a的值;
令f(x)=x-[x],求极限.
设函数z=z(x,y)具有二阶连续的偏导数,满足=x+y,z(x,0)=0,z(0,y)=y2,则z(x,y)=__________。
随机试题
细菌性痢疾的病变发生部位最少见于
对破伤风感染患者采取如下隔离措施,错误的是
急诊护士经评估后,找出目前危害病人生命的护理诊断是责任护士给予护理措施下列哪项不妥
《民用爆炸物品安全管理条例》中规定,储存民用爆炸物品应当遵守()。
现浇混凝土试块的取样,下列哪条是不正确的?[2001年第34题]
金融机构的工作人员严重不负责任,造成大量外汇被骗购或者逃汇的,应以()论处。
陈某向李某借款10万元,并签订了借款合同。张某向李某单方面提交了签名的保证书,其中仅载明“若陈某不清偿到期借款本息,张某将代为履行”。借款到期后,陈某未清偿借款本息。经查,张某并不具有代偿能力。根据担保法律制度的规定,下列关于保证合同效力及张某承担保证责任
______wearebusinesspartner,pleasecallmeassoonasyouhaveanyquestiontoourproducts.
直立人化石最早由谁发现?()
使用已经存在的类作为基础建立新类的定义,这种技术叫做类的______。
最新回复
(
0
)