首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且f’(x)=A,则f’+(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且f’(x)=A,则f’+(0)
admin
2021-01-19
92
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,ξ)(ξ>0)内可导,且
f’(x)=A,则f’
+
(0)存在,且f’
+
(0)=A。
选项
答案
(Ⅰ)作辅助函数 φ(x)=f(x)-f(a)-[*](x-a), 容易证明φ(x)满足φ(a)=φ(b)。 φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 φ’(x)=f’(x)-[*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以 f(b)-f(a)=f’(ξ)(b-a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,从而由拉格朗日中值定理可得:存在[*]∈(0,x
0
)[*](0,δ),使得 [*] 又由于[*]f’(x)=A,对(*)式两边取x
0
→0
+
时的极限,可得: [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Du84777K
0
考研数学二
相关试题推荐
下述命题①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续.②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界.③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
已知极坐标系下的累次积分其中a>0为常数,则,在直角坐标系下可表示为_________。
微分方程y’+ytanx=cosx的通解为y=___________.
积分=__________.
若线性方程组有解,则常数a1,a2,a3,a4应满足条件_______.
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0.l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.证明:在[一a,a]上存在η,使
微分方程y’’+y=x2+1+sinx的特解形式可设为()
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.求二次型f(x1,x2,x3)的矩阵的所有特征值;
随机试题
A.丙磺舒B.克拉维酸C.舒巴坦D.他唑巴坦E.甲氧苄啶本身具有广谱抗菌作用,与磺胺类药物合用可显著增强抗菌作用的药物是
关于MODS的防治原则,错误的是
患者,女,50岁。查体X线平片显示右肺门增大。胸部CT扫描适应证不包括
某企业为了扩大生产规模,和银行签订了5年期贷款协议,从银行贷款1000万元,该行为会导致()。
298K时,反应:的达到平衡后,若在恒容容器中加入氦气,下列判断正确的是()。
隐患整改措施是否科学、合理直接影响到隐患整改的效果,制定隐患整改措施时应优先考虑()
()是工程验收的最小单位,是整个建筑工程质量验收的基础。
20×7年3月,甲公司以1200万元购入一项无需安装的固定资产,其预计使用寿命为10年,预计净残值为0,按年限平均法计提折旧。20×7年12月31日,因该固定资产出现减值迹象对其进行减值测试,结果表明其可收回金额为999万元。20×7年12月31日,该公司
商业银行风险的主要类别包括()。
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。就给定资料所反映的主要问题,用1200字左右的篇幅,自拟标题进行论述。要求中心明确,内容充实,论述深刻,有说服力。
最新回复
(
0
)