首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y"-7y’+12y=x满足初始条件的特解; (Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)y"’+y"+y’+y=0的通解.
解下列微分方程: (Ⅰ)y"-7y’+12y=x满足初始条件的特解; (Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)y"’+y"+y’+y=0的通解.
admin
2017-07-10
67
问题
解下列微分方程:
(Ⅰ)y"-7y’+12y=x满足初始条件
的特解;
(Ⅱ)y"+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ)y"’+y"+y’+y=0的通解.
选项
答案
(Ⅰ)相应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根:λ
1
=3,λ
2
=4,所以,其通解为 [*]=C
1
e
3x
+C
2
e
4x
. 由于0不是特征根,所以非齐次方程的特解应具有形式y
*
(x)=Ax+B.代入方程,可得[*],所以,原方程的通解为y(x)=[*]+C
1
e
3x
+C
2
e
4x
. 代入初始条件,则得[*] 因此所求的特解为y(x)=[*] (Ⅱ)由于相应齐次方程的特征根为±ai,所以其通解为[*]=C
1
cosax+C
2
sinax.求原非齐次方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程,则得 [*] 所以,通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
,C
2
为任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程,则得 A=0. B=[*] 原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
,C
2
为任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Dqt4777K
0
考研数学二
相关试题推荐
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
求下列极限:
设一机器在任意时刻以常数比率贬值.若机器全新时价值10000元,5年末价值6000元,求其在出厂20年末的价值.
求下列不定积分:
求下列极限:
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
当x→0时,kx2与是等阶无穷小,则k=___________.
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是aTA-1a≠b.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
求下列不定积分(其中a,b为常数):
随机试题
Pickoutappropriateexpressionsfromtheeightchoicesbelowandcompletethefollowingwritedownthecorrespondingletter.
关于恶心伴随症状的临床意义,下列哪项正确
与金黄色葡萄球菌毒力有关的因素是
下列关于影响资金时间价值的因素的说法,正确的有()。
(2011年)甲公司是某省唯一一家风力发电企业,另外两家发电企业是火力发电企业。与其他两家发电企业相比,甲公司具有一定的经营优势,包括:(1)风力发电站设在本省最适宜设立风电厂的出口,该出口常年具有风力发电所必需的有效风速;(2)风机和风车等风力发电设备全
妈妈有三块糖,两块软糖,一块奶糖,给了两个儿子各一块,让他们根据自己手中的糖来猜剩下的一块是什么糖。两个儿子拿到糖后愣了一下,然后有一个聪明的马上就猜出来了。由以上可知()。
页式存储管理中的页表是由()建立的。
WhowontheWorldCup1994footballgame?WhathappenedattheUnitedNations?Howdidthecriticslikethenewplay?【C1】______a
Wheredoesthisconversationtakeplace?
Thenumberofdevicesyoucantalktoismultiplying—firstitwasyourphone,thenyourcar,andnowyoucantellyourkitchena
最新回复
(
0
)