首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2015-07-10
64
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE一A|=[*]=(λ+a一1)(λ一a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1一a,λ
2
=a,λ
3
=1+a. (1)当1一a≠a,1一a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1一a时,由[(1一a)E—A]X=0得ξ
1
=[*];λ
2
=a时,由(aE-A)X=0得ξ
2
= [*] (2)当a=0时,λ
1
=λ
3
=1, 因为r(E-A)=2,所以方程组(E一A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当[*], 因为[*]的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DjU4777K
0
考研数学三
相关试题推荐
《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》提出了到2035年基本实现社会主义现代化远景目标。下列相关说法错误的是()。
2022年中央一号文件指出,积极挖掘潜力增加耕地,支持将符合条件的()等后备资源适度有序开发为耕地。
人民代表大会制度建立60多年来,在实践中不断得到巩固和发展,展现出蓬勃生机活力。历史充分证明,人民代表大会制度是
1945年8月,蒋介石连发三电,邀请毛泽东赴重庆谈判。8月28日,毛泽东偕同周恩来、王若飞,在国民党政府代表张治中和美国驻华大使赫尔利陪同下,赴重庆与国民党当局进行谈判。这一行动证明,共产党
N件产品中有N1件次品,从中任取n件(不放回),其中1≤n≤N.(1)求其中恰有k件(k≤n且k≤N1)次品的概率;(2)求其中有次品的概率;(3)如果N1≥2,n≥2,求其中至少有两件次品的概率.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
求下列齐次型方程的通解:(1)xyˊ=y(1ny-lnx);;(3)xyˊ=xey/x+y;(4)(x+y)yˊ=x-y;(5)(x2+y2)dx-xydy=0;(6)(x+ycosy/x)dx-xcosy/xdy=0.
设对于半空间x>0内任意的光滑有向封闭曲面∑,都有其中,函数f(x)在(0,+∞)内具有连续的一阶导数,,求f(x).
随机试题
导致黄药子具有明确肝毒性的化学成分是()
甲股份有限公司发行股票公告的招股说明书中遗漏了拖欠其巨额债务的乙公司宣告破产致使该巨额债务无法收回的内容;丙证券公司以包销的方式为甲公司发售股票,该股票上市后不久,有关媒体披露乙公司上述情况,致使甲公司的股票行情大跌,投资者遭受了损失。投资者的这些损失应当
在适用下列各种审判程序进行审理时,人民法院不能进行调解的是:()
由企业非日常活动所发生的、会导致所有者权益减少的、与向所有者分配利润无关的经济利益的流出称为()。
下列项目中,可能引起企业留存收益总额发生增加变动的有()。
有学者认为:“长期以来,军政和绝大部分公民把意大利战争和埃及战争的英雄人物,即第一执政当作偶像来崇拜。”这里说的“第一执政”指的是()。
声音的音调、响度分别与其频率、振幅成正比。下图是甲、乙、丙三人的声音在示波器上相同量纲下显示的波形。据此,下列说法错误的是:
根据艾宾浩斯遗忘曲线,下列选项正确的有()。
下列关于中国地理常识的说法,正确的是()。
EveryyearmillionsofcandidatesattendtheNationalCivilServantExam,someofwhomevenregarditastheirlifelongcareeri
最新回复
(
0
)