首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
An×n==(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
An×n==(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
admin
2021-11-15
39
问题
A
n×n=
=(α
1
,α
2
,…,α
n
),B
n×n
=(α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
),当r(A)=n时,方程组BX=0是否有非零解?
选项
答案
方法一 B=(α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
)=(α
1
,α
2
,…,α
n
)[*] 由r(A)=n可知|A|≠0,而|B|=|A|[*]=|A|[1+(-1)
n+1
], 当n为奇数时,|B|≠0,方程组BX=0只有零解; 当n为偶数时,|B|=0,方程组BX=0有非零解. 方法二 BX=0[*]x
1
(α
1
+α
2
)+x
2
(α
2
+α
3
)+…+xn
(α
n
+α
1
)=0 [*](x
1
+x
n
)α
1
+(x
1
+x
2
)α
2
+…+(x
n-1
+x
n
)α
n
=0, 因为α
1
,α
2
,…,α
n
线性无关, [*] 当n为奇数时,|B|≠0,方程组BX=0只有零解; 当n为偶数时,|B|=0,方程组BX=0有非零解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DYy4777K
0
考研数学二
相关试题推荐
设的一个基础解系为,写出的通解并说明理由。
设.求(I)(II)的基础解系。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是()。
已知y1*=e﹣2x+xe﹣x,y2*=2xe﹣2x+xe﹣x,y3*=e﹣2x+xe﹣x+2xe﹣2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个解。(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0
xy"-y’=x2的通解为___.
求微分方程y〞+2yˊ-3y=e-3x的通解.
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2—2α3,(α2一α1),α1—3α2+2α3中,是对应齐次线性方程组Ax=0解向量的共有()
随机试题
背景:某小区共有40栋砖混住宅楼工程,属非地震区,分两期组织流水施工,每期20栋,屋面防水为两层3mm+3mmSBS卷材。先期施工的20栋楼建成后不久,发现在纵墙的两端出现斜裂缝,多数裂缝通过窗口的两个对角,裂缝向沉降较大的方向倾斜,
Howeverhardyou______,youwillneversucceedinpleasingher.
Peoplehavewonderedforalongtimehowtheirpersonalitiesandbehaviorsareformed.Itisnoteasytoexplainwhyoneperson
下列细胞不产生细胞源性炎症介质的是
危险性较大的分部分项工程施工前应编制安全专项施工方案,下列选项中属于方案编制内容的有()。
土石围堰水下部分石渣、堆石体的填筑,一般采用()施工。
个人教育贷款信用风险的内容包括()。
中国古代记载物理学知识。其中包括杠杆原理和浮力理论、声学和光学知识的著作是()。
4岁的男孩小石认为空气没有重量,但经过科学演示使他得知自己错了。他现在认为,空气是有重量的。从迁移的角度来说,这一理解的变化属于()
公民、法人和其他组织对下列()事项提起诉讼,人民法院不予受理。
最新回复
(
0
)