首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内连续,以T为周期,证明: (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期
设f(x)在(一∞,+∞)内连续,以T为周期,证明: (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期
admin
2018-09-20
80
问题
设f(x)在(一∞,+∞)内连续,以T为周期,证明:
(1)∫
a
a+T
f(x)dx=∫
0
T
f(x)dx(a为任意实数);
(2)∫
0
x
f(t)dt以T为周期
∫
0
T
f(x)dx=0;
(3)∫f(x)dx(即f(x)的全体原函数)周期为T
∫
0
T
f(x)dx=0.
选项
答案
(1)[*]=f(a+T)一f(a)=0, 故 ∫
a
a+T
f(x)dx=∫
a
a+T
f(x)dx|
a=0
=∫
0
T
f(x)dx. (2)∫
0
x
f(t)dt以T为周期[*]∫
0
x+T
f(t)dt—∫
0
x
f(t)dt=∫
0
x+T
f(t)dt[*]∫
0
T
f(t)dt=0. (3)由∫f(x)dx=∫
0
x
f(t)dt+C,易知此命题成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DNW4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.求方程组AX=0的通解;
设二维随机变量(X,Y)的联合密度为f(x,y)=求c;
设随机变量X的密度函数为f(x)=求常数A;
设(x1,x1,…,xn)和(x1,x1,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得是θ的无偏估计量,且在所有这样的线性估计中方差最小.
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的微分方程=0变换为y=y(x)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
用变量代换x=cost(0<t<π)化简微分方程(1—x2)y"—xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解。
随机试题
党的根本组织制度和领导制度是
Thedeclineinmoralstandards—whichhaslongconcernedsocialanalysts—hasatlastcapturedtheattentionofaverageAmericans.
妇科检查应采取
[2005年第104题]图7.2—4所示电路,换路前UC(0-)=0.2UI,UR(0-)=0,求电路换路后UC(0+)和UR(0+)分别为()。
下列各项中,应由纳税人向其机构所在地主管税务机关申报缴纳营业税的有( )。
下列各项中,应征收印花税的有()。
红红、丹丹、阳阳、珍珍和慧慧是同一家公司的同事,因工作的需要,她们不能同时出席公司举办的新产品发布会。她们的出席情况是:(1)只有红红出席,丹丹、阳阳和珍珍才出席;(2)红红不能出席;(3)如果丹丹不能出席,阳阳也不出席;(4)如果阳阳不出席,慧慧
简述集体教育模式的主要观点。
在结构化程序设计原则中,其基本结构不包括()。
1.打开考生文件夹7下的Word文档WORD1.DOC,其内容如下:【WORD1.DOC文档开始】多媒体系统的特征多媒体电脑是指能对多种媒体进行综合处理的电脑,它除了有传统的电脑配置之外,还必须增加大容量存储器、声音、图像等媒体的输
最新回复
(
0
)