首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
利用代换将方程y”cos x-2y’sin x﹢3ycos x﹦ex化简,并求出原方程的通解。
利用代换将方程y”cos x-2y’sin x﹢3ycos x﹦ex化简,并求出原方程的通解。
admin
2019-01-22
57
问题
利用代换
将方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
化简,并求出原方程的通解。
选项
答案
方法一:由[*],得 y
’
﹦u
’
sec x﹢usec xtan x, y
”
﹦u
”
sec x﹢2u
’
sec xtan x﹢usec xtan
2
x﹢usec
3
x, 代入原方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
,得 U
”
﹢4u﹦e
x
。 (1) 先求其对应的齐次线性微分方程的通解。由于其特征方程为λ
2
2﹢4﹦0,则特征方程的根为λ﹦±2i。所以通解为[*](x)﹦C
1
cos 2x﹢C
1
sin 2x,其中C
1
,C
2
为任意常数。 再求非齐次线性微分方程的特解。设其特解为u
*
(x)﹦Ae
x
,代入(1)式,得 (Ae
x
)
”
﹢4(Ae
x
)﹦Ae
x
﹢4Ae
x
﹦e
x
, 则A﹦[*],因此u
*
(x)﹦[*]e
x
。所以(1)式的通解为 u(x)﹦C
1
cos 2x﹢C
2
sin 2x﹢[*]e
x
, 其中C
1
,C
2
为任意常数。 因此,原方程的通解为 [*] 方法二:由y﹦[*]得u﹦ycos x,于是 u
’
﹦y
’
cos x-ysinx, u
”
﹦y
”
cos x-2y
’
sin x-ycos x, 于是原方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
化为u
”
﹢4u﹦e
x
(以下求解过程同方法一)。 本题考查二阶非齐次线性微分方程的求解。考生在求解微分方程之前,应该先根据题目给出的代换将微分方程化简。二阶非齐次线性微分方程的通解包含两部分:对应二阶齐次线性微分方程的通解和二阶非齐次线性微分方程的特解。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/CyM4777K
0
考研数学一
相关试题推荐
在半径为R的圆的一切内接三角形中,求出其面积最大者.
α1=(1,2,一1,0)T,α2=(1,1,0,2)T,α3=(2,1,1,a)T,α1,α2,α3生成的向量空间为2维空间,则,a=______.
已知线性方程组有解(1,一1,1,一1)T.(1)用导出组的基础解系表示通解;(2)写出x2=x3的全部解.
已知随机变量X服从参数为1的指数分布,Y服从标准正态分布,X与Y独立.现对X进行n次独立重复观察,用Z表示观察值大于2的次数,求T=Y+Z的分布函数FT(t).
设二维连续型随机变量(X,Y)的联合概率密度为(I)求X与Y的相关系数;(Ⅱ)令Z=XY,求Z的数学期望与方差.
求直线绕z轴旋转一周所得旋转面的方程.
求曲线积分I=xydx+yzdx+xzdz,C为椭圆周:x2+y2=1,x+y+z=1,逆时针方向.
计算下列三重积分或将三重积分化成累次积分将三重积分f(x,y,z)dV在三种坐标系下化成累次积分,其中Ω是由x2+y2+z2≤R2,x2+y2≤z2,z≥0所围成的区域(如图9.19所示).
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数P.
微分方程y"一3y’+2y=2ex满足的特解为_______.
随机试题
企业成本分析方法可以运用_____、_____、_____、_____。
A.排卵后B.初级卵泡C.次级卵泡D.成熟卵泡E.闭锁卵泡透明带出现于
畜肉处在僵直和后熟过程中为
对于曲线,下列说法不正确的是()。
“入境货物报检单”的“入境口岸”栏应填货物的收货地口岸。( )
国家对外贸易经济合作管理部门和国家工商行政管理部门认为外资并购境内企业妨害正当竞争,损害消费者利益的,应当在法定期限内,共同或经协商单独召集有关部门、机构、企业以及其他利害关系方举行听证会。该期限为()。
下列属于大班儿童绘画活动目标的是()。
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=a+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
在窗体上画一个命令按钮,然后编写如下事件过程:PrivateSubCommand1_Click()x=0DoUntilx=-1a=InputBox("请输入A的值")
Advertiserstendtothinkbigandperhapsthisiswhythey’realwayscominginforcriticism.Theircriticsseemtoresentthem
最新回复
(
0
)