首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln.
admin
2017-09-15
35
问题
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln
.
选项
答案
令F(χ)=lnχ,F′(χ)=-[*]≠0, 由柯西中值定理,存在ξ∈(a,b),使得[*] 即[*],整理得f(b)-f(a)=ξf′(ξ)ln[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Csk4777K
0
考研数学二
相关试题推荐
[*]
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
求下列各函数的导数(其中,a,n为常数):
设f(x)在[0,1]上连续,取正值且单调减少,证明
fˊ(x。)=0,f〞(x。)>0是函数.f(x)在点x=x。处取得极小值的一个[].
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立.解此关于a,k的方程组可得a=-1,k=1.
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)等价无穷小,则().
函数的可去间断点的个数为
随机试题
下列不属于胞内第二信使的是:
《光的赞歌》作者_____,是中国现代诗的代表诗人之一,主要作品有《_____我的保姆》。
患者男,53岁,头昏、耳鸣9个月。查体:面部及颈部紫红色,脾大。实验室检查:RBC7.9×1012/L,Hb190g/L,WBC7.7×109/L,PLT391×109/L,血清VitB下降。该患者可能的诊断是
对达不成拆迁补偿安置协议的拆迁纠纷实施行政裁决的可以是()。
(一)[背景资料]广西路桥集团通过竞标成为广西陆河桥梁工程施工任务的总承包方,在和业主签订总承包合同后,广西路桥集团立即组成项目部,通过项目部做的一些前期调研勘察工作,现在决定桥梁基础施工的具体方法如下:(1)基坑开挖采用混凝土加固坑
建设单位因急于投产,擅自使用了未经竣工验收的工程,使用过程中,建设单位发现了一些质量缺陷,遂以质量不符合约定为由将施工单位诉到人民法院。则下列情形中,能够获得人民法院支持的有()。
暂时性差异,是指资产或负债的账面价值与其计税基础之间的差额;未作为资产和负债确认的项目.不会产生暂时性差异。()
腾跃是指腿从器械的上面或下面越过的动作。()
下列情形,应当认定为是入户抢劫的是()(2018年非法学基础课单选第3题)
Itwasasunnyday.Alittleboy’sfatherwassittingonthecouch,drinkingabeerwhilewatching【K1】______basketballmatch.S
最新回复
(
0
)