首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Preschoolers’ Innate Knowledge Means They Can Probably Do Algebra Child development specialists are uncovering evidence that
Preschoolers’ Innate Knowledge Means They Can Probably Do Algebra Child development specialists are uncovering evidence that
admin
2015-03-28
52
问题
Preschoolers’ Innate Knowledge Means They Can Probably Do Algebra
Child development specialists are uncovering evidence that toddlers may understand much more than we think.
[A] Give a three-year old a smart phone and she’ll likely figure out how to turn it on and operate a few simple functions. But confront her with an algebra problem and ask her to solve for x? Not likely.
[B] For decades, child developmental psychologist Jean Piaget convinced us that young, undeveloped minds couldn’t handle complex concepts because they simply weren’t experienced or mature enough yet. Piaget, in fact, believed that toddlers could not understand cause and effect, that they couldn’t think logically, and that they also couldn’t handle abstract ideas.
[C] That’s because, he argued, children learn to develop these higher skills through trial and error. But child development specialists are finding out that preschoolers without any formal education may have the capacity to understand more complex concepts than we give them credit for, such as complicated rules for operating a toy or even solving for an unknown in algebra. Some of this is due to their ability to be more open and flexible about their world than adults. But beyond that, toddlers may have the innate ability to understand abstract concepts like quantities and causality, and that’s fueling an exciting stream of experiments that reveal just how sophisticated preschoolers’ brains might be.
[D] Alison Gopnik, professor of psychology at University of California Berkeley and her team devised a way to test how well young kids understand the abstract concept of multiple causality — the idea that there may be more than one cause for a single effect. They pitted 32 preschoolers around 4 years old against 143 un-dergrads. The study centered around a toy that could be turned on by placing a single blue-colored block on the toy’s tray, but could also be activated if two blocks of different colors — orange and purple — were placed on the tray. Both the kids and the undergraduates were shown how the toy worked and then asked which blocks activated the toy.
[E] The preschoolers were adept at figuring out that the blue blocks turned on the toy, as did the purple and orange ones. The Berkeley undergraduates, however, had a harder time accepting the scenario.Their previous experience in the world, which tends to work in a single-cause-equals-single-effect way, hampered their ability to accept the unusual rules that activated they toy; they wanted to believe that it was activated either by a single color or by a combination of colors, but not both.
[F] The preschoolers’ lack of bias about causality likely contributed to their ability to learn the multiple ways to activate the toy, but the results also suggest that preschoolers really can think logically and in more complicated ways. Just because they can’t express themselves or aren’t as adept at demonstrating such knowledge, doesn’t mean they don’t have it.
[G] Researchers from Johns Hopkins University, for example, found a similar effect among preschoolers when it came to math. Previous studies showed that if you present infants with eight objects over and over until they got bored, and then showed them 16, they suddenly regained interest and sensed that things changed. "All the evidence so far leads us to believe that this is something that babies come into the world with," says Melissa Kibbe, co-author of that study.
[H] She and her colleague Lisa Feigenson wondered if that innate sense of quantity might translate into an understanding of numbers and higher math functions, including solving for unknowns — one of the foundations of algebra — which often isn’t taught until seventh or eighth grades. So they conducted a series of experiments using a cup with a fixed amount of objects that substituted for x in the equation 5 + x=17.
[I] To divert the four- and six-year olds’ attention away from Arabic numerals to quantities instead, the researchers used a puppet and a "magic" cup that contained 12 buttons. In one of the experiments, the children saw five buttons on the table. After watching the researchers add the 12 buttons from the cup, they were told there were 17 buttons on the table. In another test, the youngsters saw three piles of objects — buttons, coins or small toys — in varying amounts, and observed the researchers adding the fixed number of contents of the puppet’s cup to each.
[J] After training the kids on how the cup worked, the researchers tried to confuse them with another cup containing fewer (such as four) or more (such as 24) objects. However, the kids understood intuitively that the decoy cup contained the wrong amount of items and that a specific amount — x, the "magic" cup amount — had to be added to reach the sum. That suggested that the preschoolers had some concept of quantity. What surprised Kibbe was not just that preschoolers understood the concept of adding "more," but that they could also calibrate how much more was needed to fill in the unknown quantity.
[K] "These kids had very little formal schooling so far, but what we are finding is that when we tap into their gut sense, something we call the Approximate Number Sense (ANS), kids are able to do much more complex calculations than if we gave them numbers and letters," says Kibbe of her results. And there doesn’t seem to be any gender differences in this innate ability, at least not among the girls and boys Kibbe studied.
[L] There’s also precedent for such innate pre-learning in reading, says Jon Star, at the Harvard University Graduate School of Education. To improve reading skills, some teachers have tapped into children’s memorization skills to make the connection between words and meaning more efficient.
[M] Kibbe’s and Gopnik’s recent work may have broader implications for education, since current math curricula in schools, which focuses on teaching Arabic numerals and on solving equations, may not be ideal for nurturing the number sense that kids are born with. "There’s an exciting movement in psychology over the past decade, as we learn that students bring certain capabilities, or innate knowledge that we hadn’t thought they had before," says Star.
[N] Though it may be too early to translate such findings to the classroom, the results lay the groundwork for studying similar innate skills and how they might be better understood. ANS, for example, is one of many constructs that young children may have that could enhance their learning but that current curricula aren’t exploiting. Developmental experts are still trying to figure out how malleable these constructs are, and how much of an impact they can have on future learning. For instance, do kids who hone their ANS skills become better at algebra and calculus in high school? "We still need to figure out which constructs matter most, and which are most amenable to interventions to help children improve their learning," says Star.
[O] "The hard part is, educationally, how do you build up and upon this intuitive knowledge in a way that allows a child to capture the complexity but not hold them back," says Tina Grotzer, associate professor of education at Harvard. Tapping into a child’s still developing sense of numbers and quantities is one thing, but overloading it with too many new constructs about algebra, unknowns, and problem solving may just gum up the working memory and end up adversely affecting his learning and academic performance.
[P] Still, that doesn’t mean that these innate skills shouldn’t be explored and possibly exploited in the class-room. Preschoolers may be smarter than we think, but we still have to figure out how to give them the right opportunities in the classroom so they know what to do with that knowledge.
Developmental experts wonder if developing ANS skills is useful for kids’ future learning of algebra and calculus in high school.
选项
答案
N
解析
段倒数第2、3句提到,发展心理学专家正试着找出这些构念具有多大的可塑性,以及其对之后的学习会产生多大的影响。比如,“近似值感”得到提高的孩子在上高中时是否更擅长代数和运算。由此可见,发展心理学专家想知道,“近似值感”得到提高是否会对孩子在高中时学习代数和运算有所帮助。本题是对这两句的概括。题中的developing ANS skills对应文中的hone their ANS skills。
转载请注明原文地址:https://www.kaotiyun.com/show/Ceh7777K
0
大学英语六级
相关试题推荐
A、Attherestaurant.B、Atthebusstation.C、Atthetravelagency.D、Atthelaundry.C场景推断题。男士说自己对对方导游的服务质量的投诉石沉大海;女士解释说员工可能是因为太
A、TostudyatTom’shome.B、Tostudyathishome.C、TocleanTom’shome.D、Tohelptheotherstudents’study.B弦外之音题。女士询问男士今天下午是
A、Halfofthemethaneintheatmosphereisfromanimals.B、Methanehasbecomethechiefsourceofgreenhousegas.C、Consumerbeh
A、Payforpartofthepicnicfood.B、InviteGary’sfamilytodinner.C、BuysomethingspecialforGary.D、Takesomefoodtothep
A、GoonadivingtourinEurope.B、Add300dollarstohisbudget.C、Traveloverseasonhisown.D、JoinapackagetourtoMexico.
A、Hercomputerdoesn’tworkwell.B、Sheisn’tgettingalongwithherstaff.C、Shedidn’tregisterforapropercourse.D、Shecan
A、Hewantshismother’sopinionaboutAdidasshoes.B、Heiseasilyfooledbyads.C、Hedidn’tplaymuchsportbefore.D、Hemakes
中华民族是龙的传人,而实际上“龙”这种动物根本没有存在过,它只是人们想象出来的一种动物象征,结合了许多种其他不同动物的悟性,包括:鹿、鱼、老虎、狮子、马、牛、驴、蛇、和鹰。龙被人们看作是一种具有神性的动物,它时常与云朵、雷电和降雨联系在一起,可以在陆地行走
月饼是中国人在中秋节食用的传统食品,一般呈圆形,寓意团圆幸福,反映了人们对家人团聚的美好愿望。在古代的中秋节,月饼被用来祭拜月神(Luna),后来逐渐形成了中秋吃月饼的传统。月饼通常是烤制而成的,外皮(crust)一般是由面粉制成,里面包进某种馅(stuf
A、Tokeeptheghostshappy.B、Toavoidbeingrecognizedbyghosts.C、Toletthespiritsroamamongtheliving.D、Toformtheiro
随机试题
延缓衰老的途径有()
关于卖淫行为构成犯罪的情形,下列选项正确的是:()
任何一个化工生产过程都是由一系列化学反应操作和一系列物理操作构成的。()
妊娠合并急性化脓性阑尾炎,行剖宫产和阑尾切除术,术中发现阑尾坏死穿孔,弥漫性腹膜炎和严重的盆腔炎。最好采取下列哪项措施
为了防止棉籽饼中毒,常采用某些化学制剂处理棉籽后再喂,如用0.2%的
在不成熟的房地产经纪市场中,优质房源往往成为同业追逐的对象。居间业务中防止撬盘最有效的手段是()。
下列关于科学技术常识的表述错误的是:
2011年,我国本地生产总值平减物价指数为:
按数据的组织形式,数据库的数据模型可分为三种模型,它们是
Itisallverywelltoblametrafficjams,thecostofpetrolandthequickpaceofmodernlife,butmannersontheroadsarebe
最新回复
(
0
)