首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解或特解: (I)一4y=4x2,y(0)=,y’(0)=2;(Ⅱ)+2y=e—xcosx.
求下列微分方程的通解或特解: (I)一4y=4x2,y(0)=,y’(0)=2;(Ⅱ)+2y=e—xcosx.
admin
2017-08-18
58
问题
求下列微分方程的通解或特解:
(I)
一4y=4x
2
,y(0)=
,y’(0)=2;(Ⅱ)
+2y=e
—x
cosx.
选项
答案
(I)相应齐次方程的特征方程λ
2
一4=0,特征根λ=±2.零不是特征根,方程有特解 y
*
=ax
2
+bx+c,代入方程得 2a一4(ax
2
+bx+c)=4x
2
. [*]—4a=4,b=0,2a—4c=0[*]a=—1,c=[*] [*] 由初值y(0)=C
1
+C
2
[*],y’(0) =2C
1
—2C
2
=2 [*] 因此得特解为 [*] (II)相应齐次方程的特征方程λ
2
+3λ+2=0,特征根λ
1
=一1,λ
2
=一2.由于非齐次项是 e
—x
cosx;,一1±i不是特征根,所以设非齐次方程有特解 y
*
=e
—x
(acosx+bsinx). 代入原方程比较等式两端e
—x
cosx与e
—x
sinx的系数,可确定出[*],所以非齐次方程的通解 为 y=C
2
e
—x
+C
2
e
—2x
+[*]e
—x
(sinx一cosx),其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/CIr4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]有连续导数,且f(0)=0,令,则必有
设x>0时,∫x2f(x)dx=arcsinx+c,F(x)是f(x)的原函数,满足F(1)=0,则F(x)=________________.
设二维随机变量(X,Y)的密度函数为求P{U2+V2≤1}.
已知(X,Y)为一个二维随机变量,X1=X+2Y,X2=X一2Y(X1,X2)的概率密度为f(x1,x2)分别求出X和Y的密度函数;
微分方程2x3y’=y(2x2一y2)的通解是____________.
设正项级数是它的部分和.证明收敛并求和;
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且微分方程[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程.该全微分方程的通解.
将函数展开成x一2的幂级数,并求出其收敛范围
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
简述唐代的行政决策形式。
患者,男性,45岁,患肝硬化7年。近日感腹胀、呼吸困难。B超示大量腹水。护士采取的护理措施应除外
下列帮助、教唆行为中,能独立构成犯罪,不按共犯处理的有:()
某建筑工人经过安全教育培训后,仍然未戴安全帽就进入现场作业施工。从事故隐患的角度来说,这种情况属于()。
中国证券业协会正式成立于()年,协会采取的是()组织形式
劳动力人口是指年龄在()具有劳动能力的人的全体。
欧洲婚礼的神圣与不容侵犯的约束力是来自教会,但是关于约束力的威信教会声称是来自上帝,可是,这只是表面上的、形式上的外在约束力。婚姻的不容侵犯的真实的、真正的、内在的约束力却是名誉感。人的名誉感是让道德行为准则的义务得以遵守的真正威信,也就是所谓的君子之道。
根据表5.1情况计算:(1)净投资;(2)国内生产总值;(3)储蓄。
Nearlytwo-thirdsofbusinessesintheUKwanttorecruitstaffwithforeignlanguageskills.Frenchisstillthemosthighlypr
"Howfarisittothenextvillage?"theAmericanasksamansittingbythesideoftheroad.Insomecountries,becausetheman
最新回复
(
0
)