求下列旋转体的体积V: (I)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体: (II)由曲线x=a(t—sint),y=a(1一cost)(O≤t≤2π),y=0所围图形绕y轴旋转的旋转体.

admin2017-08-18  0

问题 求下列旋转体的体积V:
(I)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体:
(II)由曲线x=a(t—sint),y=a(1一cost)(O≤t≤2π),y=0所围图形绕y轴旋转的旋转体.

选项

答案(I)如图3.2,交点(0,0),(1,1),则所求体积为 [*] [*] (Ⅱ)如图3.3,所求体积为 V=2π∫02πayxdx=2π∫02πaa(1=cost)a(t—sint)a(1—cost)dt =2πa30(1—cost)2(t—sint)dt =2πa30(1—cost)2tdt—2πa3π(1—cost)2sintdt =2πa30(1—cost)2tdt [*][1—cos(u+π)]2(u+π)du =2πa3π(1+cosu)2udu+2π2a3π(1+cosu)2du =4π2a30π(1+cosu)2du=4π2a30π(1+2cosu+cos2u)du =4π2a3(π+[*])=6π3a3. [*]

解析
转载请注明原文地址:https://www.kaotiyun.com/show/CBr4777K
0

最新回复(0)