首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明: η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明: η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
admin
2016-04-29
137
问题
已知η是非齐次线性方程组Ax=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
,是对应齐次方程组Ax=0的基础解系,证明:
η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n-r+1个线性无关解;
选项
答案
Aη=b,A(η+ξ
i
)=Aη=b,i=1,2,…,n-r,故η,η+ξ
1
,η+ξ
2
…,η+ξ
n-r
,均是Ax=b的解向量. 设有数k
0
,k
1
,k
2
,…,k
n-r
,使得k
0
η+k
1
(η+ξ
1
)+ k
2
(η+ξ
2
)+…+ k
n-r
(η+ξ
n-r
)=0, 整理得(k
0
+ k
1
+…+ k
n-r
)η+ k
1
ξ
1
+…+ k
n-r
ξ
n-r
=0,(*) (*)式左乘A,得(k
0
+ k
1
+…+ k
n-r
)b=0,其中b≠0,得k
0
+ k
1
+…+ k
n-r
=0(* *), 代入(*),因ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组的基础解系,线性无关,得 k
i
=0,i=1,2,…n-r. 代入(* *),得k
0
=0,从而有η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n-r+1个线性无关解
解析
转载请注明原文地址:https://www.kaotiyun.com/show/C1T4777K
0
考研数学三
相关试题推荐
坚持和发展中国特色社会主义()。
2020年4月17日,习近平总书记主持召开中央政治局会议,强调要坚持稳中求进工作总基调,指出稳是大局,必须确保疫情不反弹,稳住经济基本盘,兜住民生底线,要求在稳的基础上积极进取,在常态化疫情防控中全面推进复工复产达产,恢复正常经济社会秩序,培育壮大新的增长
中华民族伟大复兴的基础工程是()。
材料1 每当经历一些重大事件、重大任务,或面临重要关头、关键时刻,常常会孕育并诞生一种崇高而伟大的精神。我党历史上的红船精神、井冈山精神、长征精神、延安精神、大庆精神、“两弹一星”精神、雷锋精神、改革开放精神以及抗洪、抗震、女排精神等,都是时代的呼唤、
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
计算下列各立体的体积:(1)抛物线y2=4x与直线x=1围成的图形绕z轴旋转所得的旋转体;(2)圆片x2+(y-5)2≤16绕x轴旋转所得的旋转体;(3)摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与x轴围成的图形绕直线y
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:exy-xy=2和
随机试题
社会角色的涵义。
体温调节的基本中枢位于
男性,25岁,体重60kg。因高位小肠瘘1天入院,入院后经颈内静脉插管滴入肠外营养液,2周后突然出现寒战、高热.无咳嗽、咳痰,腹部无压痛和反跳痛。观察8小时如果仍然有高热,应采取的措施是
男性,22岁,既往有HBsAg阳性史。10天前无诱因发烧,体温逐渐上升,波动于37.5~39℃,近3天体温持续在38.5~39.5℃不降,伴有食欲不振、乏力、腹胀及尿黄,查体:139.5℃.1788/分,BP110/70mmHg,神清,表情淡漠,未见皮疹,
若施工招标文件和中标人投标文件对工程质量标准的定义不一致,则商签施工合同时,工程质量标准约定应以()为准。
计算机的最佳开机顺序是先开主机再开外部设备。()
会计人员继续教育的对象不包括已取得会计从业资格但不在会计岗位的人员。()
Duringthetraditionalweddingceremony,thebrideandthebridegroompromiseeachotherlifelongdevotion.Yet,aboutoneouto
ItismyhonortorecommendMr.LiWeiforthepositionofDirectorofTechnicalDepartmentatyourCompany.Mr.Liworkedi
A、Thedifferenttastesofpeopleforsports.B、Thedifferentcharacteristicsofsports.C、Theattractionoffootball.D、Theattr
最新回复
(
0
)