首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
admin
2019-07-19
74
问题
设曲线L
1
与L
2
皆过点(1,1),曲线L
1
在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L
2
在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
选项
答案
对曲线L
1
,由题意得[*]=2,解得y=x(2x+C
1
),因为曲线L
1
过点(1,1),所以C
1
=一1,故L
1
:y=2x
2
一x. 对曲线L
2
,由题意得[*], 因为曲线L
2
过点(1,1),所以C
2
=一1,故L
2
:y=2一[*]. 由2x
2
一x=2一[*]得两条曲线的交点为([*],0)及(1,1), 故两条曲线所围成区域的面积为A=[*]一ln2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Bjc4777K
0
考研数学一
相关试题推荐
设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫0af(x)dx+∫0bg(x)dx=ab,其中g(x)是f(x)的反函数.
求曲线积分I=∫L(y2+z2)dx+(z2+x2)dy+(x2+y2)dz,其中L是球面x2+y2+z2=2bx与柱面x2+y2=2ax(b>a>0)的交线(z≥0).L的方向规定为沿L的方向运动时,从z轴正向往下看,曲线L所围球面部分总在左边(如图10
求I=xydxdy,D由曲线x2+y2=2x+2y一1所围成.
与a1={1,2,3},a2={1,一3,一2}都垂直的单位向量为____________.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时,求正交矩阵Q,使Q-1AQ=A.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
级数的极限值等于()
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,的解。
方程y’"+2y"=x2+xe-2x的特解形式为()。
随机试题
工程咨询单位的主要营销手段有()。
资金的时间价值是客观存在的,生产经营的一项基本原则就是充分利用资金的时间价值并最大限度地获得其时间价值,这就要求()。
下列关于投资型保险产品的表述,正确的是()。
登记账簿必须以()为依据,并定期进行结账、对账。
一居民楼内电线的负荷只能允许同时使用6台空调。现有8户人家各安装了一台空调。问在一天(24小时)内,平均每户(台)最多可使用空调多少小时?()
在美国所有捐献的血液中有45%是O型血;由于O型血适用于任何人,所以在没有时间测定患者是何种血型的危急时刻,O型血是不可缺少的。O型血是唯一可与其他任何血型相融的血型,所以它可以输给任何受血者。然而正是由于这一特殊用途,O型血长期处于短缺状态。如果上文陈述
菱形中的较小的内角是60°.(1)菱形的一条对角线与边长相等(2)菱形的一条对角线是边长的倍
用高级语言编写的程序称之为()。
ThefinalstepofSQ3Risrevision.Revisionshouldnotberegardedassomethingtobeundertakenjustbeforeexaminations.【76】O
【B1】【B17】
最新回复
(
0
)