首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且Aα1=α2,A2α1=α3,A3α1=-α1. (I)证明矩阵A+2E可逆,并求(A+2E)-1; (Ⅱ)如果α1=(1.0,一1)T,α2=(0,1,1)T,α3=(一1,1,1)T,求矩阵A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且Aα1=α2,A2α1=α3,A3α1=-α1. (I)证明矩阵A+2E可逆,并求(A+2E)-1; (Ⅱ)如果α1=(1.0,一1)T,α2=(0,1,1)T,α3=(一1,1,1)T,求矩阵A.
admin
2020-09-23
37
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且Aα
1
=α
2
,A
2
α
1
=α
3
,A
3
α
1
=-α
1
.
(I)证明矩阵A+2E可逆,并求(A+2E)
-1
;
(Ⅱ)如果α
1
=(1.0,一1)
T
,α
2
=(0,1,1)
T
,α
3
=(一1,1,1)
T
,求矩阵A.
选项
答案
(I)由已知条件知 A
3
α
1
=-α
1
, A
3
α
2
=A
4
α
1
=A(A
3
α
1
)=一Aα
1
=一α
2
, A
3
α
3
=A
5
α
1
=A
2
(A
3
α
1
)=一A
2
α
1
=-α
3
, 则A
3
(α
1
,α
2
,α
3
)=(A
3
α
1
,A
3
α
2
,A
3
α
3
)=一(α
1
,α
2
,α
3
), 记B=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,则矩阵B可逆,于是A
3
B=一B,等式两端 右乘B
-1
,得A
3
=一E,故A
3
+8E=7E,即 [*] 于是A+2E可逆,且(A+2E)
-1
=[*] (Ⅱ)由已知条件知Aα
1
=α
2
,Aα
2
=A
2
α
1
=α
3
,Aα
3
=A
3
α
1
=一α
1
,从而有 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
2
,α
3
,一α
1
), 即 [*] 故 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Bcv4777K
0
考研数学一
相关试题推荐
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=O的解,则m=______.
设连续型随机变量X的概率密度f(x)为偶函数,且则对任意常数a>0,P{|X|>a}为().
(2008年)曲线sin(xy)+ln(y—x)=x在点(0,1)处的切线方程为__________。
(96年)设工厂A和工厂B的产品的次品率分别为1%和2%,现从由A厂和B厂的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品是A厂生产的概率是_______.
曲线y=lnx上与直线x+y=1垂直的切线方程为__________
设X,y相互独立,且都服从参数为λ的指数分布,下列结论正确的是()
设.(Ⅰ)用变换x=t2将原方程化为y关于t的微分方程;(Ⅱ)求原方程的通解.
设A、B分别为m阶和n阶方阵,且|A|=a,|B|=b,则行列式=________.
(2010年)(I)比较与的大小,说明理由;(Ⅱ)记求极限
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
随机试题
请简述静态重定位和动态重定位各自的特点。
嗜睡是最轻的意识障碍,不会出现的是()
枸杞子、墨旱莲和女贞子共同的功效是
高危妊娠是指
丙公司为上市公司,增值税一般纳税企业,适用增值税税率为17%(假设没有其他税费),原材料只有甲材料一种并专门用于生产车间生产乙产品,该公司原材料按计划成本法进行日常核算。2013年12月1日,甲材料的计划单价为80元/千克,计划成本总额为250000元,材
哥特式建筑风格流行于()时期。
学校心理辅导是学校实施心理健康教育的主渠道,重点应以少数有心理问题的学生的治疗性辅导为主。()
在机器学习概念中,有监督学习、无监督学习和强化学习三大类典型方法。下列学习任务属于无监督学习的是()。
有如下程序段:intx=12;doubley=3.141593;printf("%d%8.6f",x,y);其输出结果是()。
A、 B、 C、 B
最新回复
(
0
)