首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
[2004年] 设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2021-01-19
68
问题
[2004年] 设矩阵A=
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
可利用特征值的性质即命题2.5.2.1求a,也可利用特征多项式求a. 再利用命题2.5.3.2(3)判别A是否可相似对角化,只需考查二重特征值是否有两个线性无关的特征向量. (1)求a的值.A的特征多项式为 [*] =(λ一2)(λ
2
一8λ+18+3a). 若λ
1
=λ
2
=2是特征方程的二重根,则由命题2.5.2.1得到 1+4+5=2+2+λ
3
, 则λ
3
=6.于是A的特征值为2,2,6.易求得∣A∣=6(a+6).再利用命题2.5.2.1得 λ
1
λ
2
λ
3
=2×2×6=∣A∣=6(a+6), 即 a=一2. 或者,若λ=2是特征方程的二重根,由式①知,必有2
2
一8×2+18+3a=0,解得a=一2. 若λ=2不是特征方程的二重根.设λ
0
为其二重根,则由命题2.5.2.1有2+λ
0
+λ
0
=1+4+5,即λ
0
=4.于是A的特征值为2,4,4.再用命题2.5.2.1得 2×4×4=∣A∣=6(a+6), 解得 a=一2/3. 或者,当λ=2不是特征方程的二重根时,则由式①知λ
2
一8λ+18+3a必为完全平方,即18+3a=(8/2)
2
,解得a=一2/3. (2)讨论A是否可相似对角化. 当a=一2时,A的特征值为2,2,6,特征矩阵2E—A=[*]的秩为1,故二重特征值λ=2对应的线性无关的特征向量有两个.由命题2.5.3.2(3)知,A可相似对角化. 当a=一2/3时,A的特征值为2,4,4,特征矩阵4E—A=[*]的秩为2,故二重特征值λ=4对应的线性无关的特征向量只有一个.由命题2.5.3.2(3)知,A不可相似对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/BA84777K
0
考研数学二
相关试题推荐
[*]
[*]
A、 B、 C、 D、 A
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_________.
设平面图形A由χ2+y2≤2χ及y≥χ、所确定,则A绕商线χ=-2旋转一周所得旋转体的体积公式为().
已知y=y(x)是微分方程(x2+y2)dy=dx一dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).(1)证明:y(x)<y0+一arctanx0;
[2014年]当x→0+时,若lnα(1+2x),(1一cosx)1/α均是比x高阶的无穷小,则α的取值范围是().
y+2x-1=0
求∫1/(1+sinx)dx.
5/24因为sinx=x-x3/3!+o(x3),所以当x→0时(1+x2)sinx-x~5/6x3,故原式=5/24.
随机试题
下列哪项不能作为感染性疾病的基因治疗策略:
男性,33岁,因“原发甲亢”施行甲状腺次全切除术后6小时,患者感呼吸困难。面色青紫,颈部敷料呈红色。下述处理方法最恰当的是
丹痧涉及的主要脏腑是
下列哪些情形下权利人可以行使留置权?
桩基工程检验批质量验收要求为()。
享受奉献带来的______和______是人生的一大幸福。
设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρxy=-0.5,且P(aX+by≤1)=0.5,则().
设有如图所示窗体和以下程序:PirintSubCommand1_Click()Text1.Text="VisualBasic"EndSubPrivateSubTextLostFocus()If
()价格适中()味道鲜美()性能优良()货源充足
A、Becausetheywanttorealizetheirdreams.B、Becausetheywanttoseekgreaterattention.C、Becausetheyhavetoaccomplishot
最新回复
(
0
)