首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组 试问a取何值时,该方程组有非零解,并求出其通解.
设有齐次线性方程组 试问a取何值时,该方程组有非零解,并求出其通解.
admin
2020-03-05
26
问题
设有齐次线性方程组
试问a取何值时,该方程组有非零解,并求出其通解.
选项
答案
对方程组的系数矩阵A作初等行变换: [*] (1)当a=0时,r(A)=1<n,故方程组有非零解,其同解方程组为 x
1
+x
2
+…+x
n
=0 由此得基础解系为 ξ
1
=(一1,1,0,…,0)
T
,ξ
2
=(一1 0,1,…,0)
T
,…,ξ
n—1
=(一1,0,0,…,1)
T
,于是方程组的通解为 x=k
1
ξ
1
+k
2
ξ
2
+…+k
n—1
ξ
n—1
,其中k
1
,…,k
n—1
,为任意常数. (2)当a≠0时,对矩阵B作初等行变换: [*] 可知a=一[*]时,r(A)=n一1<n.故此时方程组也有非零解,方程组的用自由未知量表示的通解为 x
2
=2x
1
,x
3
=3x
1
,…,x
n
=nx
1
(x
1
任意), 由此得基础解系为 ξ=(1,2,3,…,n)
T
于是方程组用基础解系表示的通解为 x=kξ,其中k为任意常数.
解析
对n元齐次线性方程组Ax=0,当r(A)=r<n时有非零解,此时,为了求出基础解系,应先求出方程组的用自由未知量表示的通解,然后在这个通解中依次令n一r个自由未知量分别取值为1,0,…,0;0,1,…,0;…;0,0,…,1,则所得到的n一r个解ξ
1
,ξ
2
,…ξ
n—r
,就是方程组的一个基础解系.那么,究竟怎样来选取自由未知量呢?其一般原则是:先在系数矩阵中找到一个r阶非零子式(由r(A)=r知这样的非零子式必存在),则可将与这个子式对应的r个未知量作为约束未知量,从而方程组的其它n一r个未知量自然就是自由未知量了,解出由自由未知量表示约束未知量的表达式,就是用自由未知量表示的通解.例如,本题中当a=一
时,r(A)=n一1,系数矩阵所化成的矩阵C的右下角的n一1阶子矩阵是一个单位矩阵,因此就可选对应的未知量x
1
,x
2
,…x
n
为约束未知量,从而x
1
自然就是自由未知量,再通过移项,即求得用自由未知量表示的通解:x
2
=2x
1
,x
3
=3x
1
,…,x
n
=nx
1
,自由未知量只有一个,因而令x
1
=1,即得基础解系ξ=(1,2,…,n)
T
.
转载请注明原文地址:https://www.kaotiyun.com/show/B0S4777K
0
考研数学一
相关试题推荐
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则|C|=______.
设随机变量X与y相互独立且都服从参数为λ的指数分布,则下列随机变量中服从参数为2λ的指数分布的是().
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
试证明:曲线恰有三个拐点,且位于同一条直线上.
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:(b一a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx.(*)
求下列函数的导数与微分:
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设其中f和g具有一阶连续偏导数,且gz(x,y,z)≠0,求。
设函数f(x)连续,且f(0)≠0,求极限。
求不定积分
随机试题
宽带(宽频)探头,不包括下列哪项含义
公司清算
患儿,4岁,因外伤左上乳中切牙内陷移位,牙龈无明显撕裂伤,牙槽突无折断,X线片显示:恒牙胚未受波及。正确的处理是()
以下关于体股癣的主要临床表现特点哪项不正确()
白及的主治病证有( )。
执行拖航任务时,任何船只()。
甲公司是一家投资控股型的上市公司,拥有从事各种不同业务的子公司。 (1)甲公司的子公司——乙公司是一家建筑承包商,专门从事办公楼设计和建造业务。20×7年2月1日,乙公司与戊公司签订办公楼建造合同,按照戊公司的特定要求在戊公司的土地上建造一栋办公楼。根据
在物业管理适用的各类文书中,主送机关是()。
美国各门课程中多样化的实践活动,以及日本的综合活动时间反映出对()在课程中的地位的重视。
Inthefirstyearsofthe21stcentury,noareaoftheAmericaneconomyhasexcitedmoreemotionthanthepropertymarket.First
最新回复
(
0
)