首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ); (2)存在η∈(a,b),使得ηf’(η)+f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ); (2)存在η∈(a,b),使得ηf’(η)+f(η)=0.
admin
2019-08-23
38
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:
(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ);
(2)存在η∈(a,b),使得ηf’(η)+f(η)=0.
选项
答案
(1)令φ(x)=[*],因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在ξ∈(a,b),使得φ’(ξ)=0, 而φ’(x)=[*][f’(x)一2xf(x)]且[*]≠0,故f’(ξ)=2ξf(ξ). (2)令φ(x)=xf(x),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在η∈(a,b),使得φ’(η)=0, 而φ’(x)=xf’(x)+f(x),故ηf’(η)+f(η)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Apc4777K
0
考研数学一
相关试题推荐
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明第一问的逆命题成立。
已知方程组有解,证明:方程组无解。
证明:(Ⅰ)对任意正整数n,都有成立;(Ⅱ)设an=,证明{an}收敛。
设。对上小题中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0证明:向量组α,Aα,…,Ak—1α是线性无关的。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
随机试题
机体对细胞外游离病毒的免疫作用主要靠()
在医院中出生的新生儿感染,均属医院感染。()
细胞内外液渗透压的平衡主要依靠以下哪一种物质的移动来维持
评价外科病人的营养状态,最简单而实用的指标是
砂仁与豆蔻的共同点有
以下()是5G低功耗大连接技术场景面向的业务需求。
把机电工程资料分为输人类、上报审批类等是按()分类的。
根据以下情境材料,回答下列问题。2014年10月,某公司司机孙某驾驶轻型货车到甲市送货,途经乙市一个十字路口时,因思想上麻痹大意未提前减速,撞向正常穿过马路的行人于某。事发后,孙某报警并协同路人将于某送往医院抢救,但于某终因伤势过重,抢救无效死亡。根
下列行为中,()不一定属于不正当竞争。
大规模杀伤性武器
最新回复
(
0
)