首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设平均收益函数和总成本函数分别为 AR=a-bQ, C=-7Q2+100Q+50, 其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性Ep=时总利润最大.求总利润最大时的产量,并确定a,b的值.
设平均收益函数和总成本函数分别为 AR=a-bQ, C=-7Q2+100Q+50, 其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性Ep=时总利润最大.求总利润最大时的产量,并确定a,b的值.
admin
2016-10-20
63
问题
设平均收益函数和总成本函数分别为
AR=a-bQ, C=
-7Q
2
+100Q+50,
其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性E
p
=
时总利润最大.求总利润最大时的产量,并确定a,b的值.
选项
答案
总利润函数 L(Q)=R-C=Q.AR-C=[*]+(7-b)Q
2
+(a-100)Q-50, 从而使总利润最大的产量Q及相应的a,b应满足L’(Q)=0,MR=67及E
p
= [*] 由此得到两组可能的解:a=111,b=[*],Q=3与a=111,b=2,Q=11. 把第一组数据中的a,b代人得总利润函数 [*] 虽然L’(3)=0,L’’(3)<0,即L(3)确实是L(x)的最大值,但L(3)<0,不符合实际,故应舍去. 把第二组数据中的a,b代人得总利润函数 L=[*]+5Q
2
+11Q-50, 也有L’(11)=0,L’’(11)<0,即L(11)=[*]是L(x)的最大值,故a=111,b=2,是所求常数的值,使利润最大的产量Q=11.
解析
平均收益函数AR=a-bQ其实就是价格P与销售量Q的关系式,由此可得总收益函数
R=Q.AR=aQ-bQ
2
2,
需求函数(它是P=a-bQ的反函数)Q=
(a-P),进而可得需求价格弹性
利用以上结果不难解决本题.
转载请注明原文地址:https://www.kaotiyun.com/show/AiT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
[*]
[*]
[*]
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
求下列曲线所围成的图形的公共部分的面积:(1)ρ=3及ρ=2(1+cosφ);(2)及ρ2=cos2φ.
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
随机试题
主张心理学应该研究意识的功能和目的,而不是它的结构;认为意识像流水一样是连续性的,提出“意识流”观点的心理学流派是()
组织的特征包括()
美国中央银行是()
脊髓半侧损害综合征常见于
消化性溃疡外科治疗的理论基础最终在于
货币政策工具可分为一般性政策工具(包括直接信用控制、间接信用指导等)和选择性政策工具(包括法定存款准备金率、再贴现政策、公开市场业务)。( )
TCP/IP体系结构中的TCP和IP所提供的服务分别为()。
简述地理教学过程的基本规律。
把黑桃、红桃、方片、梅花四种花色的扑克牌按黑桃10张、红桃9张、方片7张、梅花5张的顺序循环排列。问第2015张扑克牌是什么花色?
∫dx/xlnx(lnlnx+1)2=________.
最新回复
(
0
)