首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Surface Fluids on Venus and Earth P1: When astronomers first pointed their rudimentary telescopes at Venus, they saw a world shr
Surface Fluids on Venus and Earth P1: When astronomers first pointed their rudimentary telescopes at Venus, they saw a world shr
admin
2018-10-18
80
问题
Surface Fluids on Venus and Earth
P1: When astronomers first pointed their rudimentary telescopes at Venus, they saw a world shrouded in clouds. Here on Earth, clouds mean water, so early astronomers imagined a tropical world with constant rainfall. The truth, of course, is that the hydrological state on Venus is quite different from that of Earth. The hydrologic cycle describes the continuous movement of liquid above, on, and below the surface of a planet. These movements derive their energy from the Sun and the gravitational forces of the planet itself, and in turn redistribute energy around the globe through atmospheric circulation. As fluids interact with surface materials, water molecules move particles repeatedly through solid, liquid, and gaseous phases or react chemically with them to modify and produce materials. On a solid planet with a hydrosphere and an atmosphere, only a tiny fraction of the planetary mass flows as surface fluids. Yet, the movements of these fluids can drastically alter a planet.
P2: Imagine Venus a long time ago. The planet is nearly identical to the Earth in size, mass, composition and distance from the Sun. However, it lacks any sign of a hydrologic system—there are no streams, lakes, oceans, or glaciers. It begins like the Earth with global oceans, carbon dioxide dissolved in the oceans, and carbonate rocks forming at the bottoms of the oceans. But because Venus is just a tiny bit smaller than the Earth, it has less radioactive heat sources inside. Thus, at some time in the distant past, perhaps only 500 million to 1 billion years ago, Venus may have run out of enough internal heat to continue to drive the tectonic activity. Alternatively, because Venus is a little closer to the Sun, we would expect that the original temperature of Venus should have been a little warmer than that of the early Earth. The slightly elevated temperature puts a bit more water in the oceans and atmosphere and a bit less in the rocks. This makes the rocks harder since water serves as a lubricant for the plate tectonic process. Either way, tectonic activity begins to slow down. Because Venus receives more heat from the Sun, water released from the interior evaporated and rose to the upper atmosphere, where the Sun’s ultraviolet rays broke the molecules apart. Much of the freed hydrogen escaped into space, and Venus lost its water. Without water, Venus became less and less like Earth and kept an atmosphere filled with carbon dioxide. On Earth, liquid water removes carbon dioxide from the atmosphere and combines it with calcium, through rock weathering, to form carbonate sedimentary rocks. Without liquid water to remove carbon from the atmosphere, prohibiting the formation of carbonate minerals, the level of carbon dioxide in the atmosphere of Venus remains high.
P3: Like Venus, Earth is large enough to be geologically active and for its gravitational field to hold an atmosphere. But fortunately, being further away, it has less heating from the sun and allows water to exist as a liquid, a solid, and a gas. Water is thus extremely mobile and moves rapidly over the planet in a continuous hydrologic cycle. Driven by energy from the sun, water is constantly being cycled from the ocean, through the atmosphere, and ultimately back to the oceans. As a result, Earth’s surface has been continually changed and eroded into delicate systems of river valleys—a remarkable contrast to the surfaces of other planetary bodies where impact craters dominate. Other geologic changes occur when the gases in the atmosphere or water react with rocks at the surface to form new chemical components with different properties. Weathering breaks down rocks into gravel, sand, and sediment, and is an important source of key nutrients such as calcium and sulfur. Estimates indicate that, on average, Earth’s surface weathers at a rate of about 0.5 millimeter per year. Actual rates may be much higher at specific locations and may have been accelerated by human activities. However, none of these would have happened if our planet had spun a little further from or nearer to the sun. Because liquid water was present, self-replicating molecules of carbon, hydrogen, and oxygen developed life early in Earth’s history and have rapidly modified its surface, blanketing huge parts of the continents with greenery.
P2: Imagine Venus a long time ago. The planet is nearly identical to the Earth in size, mass, composition and distance from the Sun. ■ However, it lacks any sign of a hydrologic system—there are no streams, lakes, oceans, or glaciers.■ It begins like the Earth with global oceans, carbon dioxide dissolved in the oceans, and carbonate rocks forming at the bottoms of the oceans. ■But because Venus is just a tiny bit smaller than the Earth, it has less radioactive heat sources inside. Thus, at some time in the distant past, perhaps only 500 million to 1 billion years ago, Venus may have run out of enough internal heat to continue to drive the tectonic activity. Alternatively, because Venus is a little closer to the Sun, we would expect that the original temperature of Venus should have been a little warmer than that of the early Earth. The slightly elevated temperature puts a bit more water in the oceans and atmosphere and a bit less in the rocks. This makes the rocks harder since water serves as a lubricant for the plate tectonic process. Either way, tectonic activity begins to slow down. Because Venus receives more heat from the Sun, water released from the interior evaporated and rose to the upper atmosphere, where the Sun’s ultraviolet rays broke the molecules apart. ■ Much of the freed hydrogen escaped into space, and Venus lost its water. Without water, Venus became less and less like Earth and kept an atmosphere filled with carbon dioxide. On Earth, liquid water removes carbon dioxide from the atmosphere and combines it with calcium, through rock weathering, to form carbonate sedimentary rocks. Without liquid water to remove carbon from the atmosphere, prohibiting the formation of carbonate minerals, the level of carbon dioxide in the atmosphere of Venus remains high.
An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some answer choices do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points. Drag your choices to the spaces where they belong. To review the passage, click on View Text.
Over time, the movement of surface fluids has greatly changed Venus and Earth.
-
-
-
Answer Choices
A Although Venus is about the same size as Earth, its greater volcanic activity has added considerably to carbon dioxide levels in its atmosphere.
B Like Venus, Earth has an atmosphere, but Earth’s atmosphere has far more oxygen and nitrogen than does the atmosphere of Venus.
C On Earth, chemical reactions involving fluids remove carbon dioxide from the atmosphere by giving rise to carbonate rocks, and winds energized by gravity flow systems move fine particles from one place to another.
D Because Venus lost the water it originally had, most of its carbon dioxide remained in its atmosphere, causing the planet to become very warm.
E On Earth, the dominance of river valley landscapes and the existence of life are due to the planet’s hydrologic cycle.
F The evaporation of liquid water from Earth’s surface is largely limited by the life forms that have developed, particularly the vegetation.
选项
答案
C,D,E
解析
【文章总结题】本文讨论了金星和地球上水存在或消失的原因。因此涉及影响因素的C、D、E选项正确。A、B、F文中未提及。
转载请注明原文地址:https://www.kaotiyun.com/show/9wfO777K
0
托福(TOEFL)
相关试题推荐
Completethesentencesbelow.WriteNOMORETHANTHREEWORDSforeachanswer.Rickyhaspointedoutthatasidefromjournals,h
ChooseTWOletters,A-E.WhichTWOsubjectsdidMartinalikebestbeforegoingtouniversity?AArtBHistoryCFrenchDEnglish
ChooseTWOletters,A-E.WhichTWOsubjectsdidMartinalikebestbeforegoingtouniversity?AArtBHistoryCFrenchDEnglish
ChooseTWOletters,A-E.WhichTWOsubjectsdidMartinalikebestbeforegoingtouniversity?AArtBHistoryCFrenchDEnglish
Choosethecorrectletter,A,BorC.Dianawasdisappointedbecause
BeforeyoulistenLookatthetaskbelow.Trytoworkoutthesituationfromthetask.Whataretheytalkingabout?Whyarethey
Whatdoesthepassagemainlydiscuss?Theword"rudimentary"inline21isclosestinmeaningto
(When)precipitationoccurs,(some)ofitevaporates,somerunsoff(the)surfaceitstrikes,andsome(sinking)intotheground
AstronomyWhatdideighteenth-centuryastronomershaveincommonwithastronomerstoday?
随机试题
左侧精索静脉回流到
女性,32岁,妊娠31周,少量阴道流血,以往曾有3次早产史。主要处理应是
下列说法中正确的是()。
锅炉受热面组合场地是根据设备组合后的()来决定的。
根据营业税法律制度的规定,下列关于营业额的表述中,正确的有()。
某公司占地5000平方米,房产原值3000000元。2013年发生以下业务:(1)全年取得旅游业务收入1500000元。(2)6月30日,签订房屋租赁合同一份,将原值.500000元的办公用房从7月1日起出租给他人使用,租期
在桌子上有三个盖着盖子的盒子,其中第一个盒子内有两个红球,第二个盒子内有两个黄球,第三个盒子内有一个红球和一个黄球。三个盒子盖子上分别写着“红球”、“红黄球”、“黄球”,但是所有标签都标错了。从哪个盒子内取出一个球后,便能判断出所有盒子内都装着什么球?
臭氧被称为地球生物圈的“保护伞”,缺少了这把“保护伞”,地球上一切生命的产生、延续都将是不可能的。以下有关大气臭氧层的说法正确的是:
设∑是球面x2+y2+z2=4(z≥0)的外侧,计算
Moresurprising,perhaps,thanthecurrentdifficultiesoftraditionalmarriageisthefactthatmarriageitselfisaliveand【C1
最新回复
(
0
)