首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,三(6))某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正
(2004年试题,三(6))某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正
admin
2021-01-19
95
问题
(2004年试题,三(6))某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.0×10
6
).问从着陆点算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)
选项
答案
由题设,设飞机质量为m=9000(kg),着陆时的水平速度为v
o
=700(km/h),并设从着陆点开始时的t时刻,飞机滑行距离为x(t),速度为v(t),则[*]由牛顿第二定律知[*]关于式(1),由[*]即dx=[*]积分上式得[*],由初始条件,当t=0时,x(0)=0,v(0)=v
0
,知C
1
=[*]所以[*]令v=0,可解得[*]即飞机滑行的最长距离为1.05km.关于式(2),即[*]分离变量得[*]积分上式得[*]同样由初始台条件v(0)=v
0
,可解出C
2
=v
0
,所以[*]从而[*]即得到同样结果.
解析
方程(1)实际上是一个二阶常系数微分方程,即mx
’’
+kx
’
=0,相应特征方程为
,可解得特征根为λ
1
=0,λ
2
=
,则通解为
由初始条件x(0)=0,v(0)=v
0
,得C
3
=一C
4
=
所以
当t→+∞时,
同样可得出飞机滑行的最长距离为1.05km.
转载请注明原文地址:https://www.kaotiyun.com/show/9u84777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,且方程组Ax=b有解,则
已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=__________。
设A是三阶矩阵,且各行元素的和都是5,则矩阵A一定有特征值__________。
设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则=_____
设f(x)在[a,b]上连续,证明:
求极限:.
设y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e-χ的一个解,且=0.(Ⅰ)求y(χ),并求y=y(χ)到χ轴的最大距离.(Ⅱ)计算∫0+∞y(χ)dχ.
(2005年试题,16)如图1一3—7所示,C1,C2分别是y=和y=ex的图像,过点(0,1)的曲线C3是一单调增函数的图像.过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly,记C1,C2与lx所围图形的面积为S1(x);C2,C3与lx
(2005年)设F(χ)是连续函数f(χ)的一个原函数,“MN”表示“M的充分必要条件是N”,则必有【】
((13年)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设汁要求.当以3m3/min的速率向容器内注入液体时,液面的面积将以πm3/mjn的速率均匀扩大(假设注入液体前,容器内无液
随机试题
A.Ca2+内流B.Na+内流C.K+内流D.K+外流窦房结细胞动作电位0期去极化是由于
关于儿童糖尿病,错误的是:()
先天愚型染色体核型绝大部分为
在完全竞争市场上,整个行业的需求曲线是()。
在我国,公安机关的阶级属性是()。
劳动者在试用期内提前()日通知用人单位,可以解除劳动合同。
台风过后,某单位发起救灾捐款活动,甲、乙两部门的员工人数之比是4:3,捐款总额之比是5:4。若甲部门的人均捐款是300元,则乙部门的人均捐款是
全国各地的航空公司目前开始为旅行者提供互联网订票服务。然而,在近期内,电话订票并不会因此减少。除了以下哪项外,其他各项均有助于解释上述现象?
有如下程序:PrivateSubForm_Click()DimsAsInteger,pAsIntegerp=1Fori=1To4Forj=1Tois=s+jNe
WalkingtoExercisetheBrainDoyouthinksittingandstudyingallthetimewillimprovestudents’grades?Thinkagain.Getti
最新回复
(
0
)