首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,则下列命题正确的是( ).
设A为n阶矩阵,则下列命题正确的是( ).
admin
2021-07-27
40
问题
设A为n阶矩阵,则下列命题正确的是( ).
选项
A、若α为A
T
的特征向量,那么α为A的特征向量
B、若α为A
*
的特征向量,那么α为A的特征向量
C、若α为A
2
的特征向量,那么α为A的特征向量
D、若α为2A的特征向量,那么α为A的特征向量
答案
D
解析
①矩阵A
T
与A的特征值相同,但特征向量不一定相同,故(A)不正确.
②假设α为A的特征向量,λ为其特征值。当λ≠0时,α也为A
*
的特征向量.这是由于Aα=λα→A
*
Aα=λA
*
α→A
*
α=λ
-1
|A|α.但反之,α为A
*
的特征向量,那么α不一定为A的特征向量.例如:当r(A)<n-1时,A
*
=0,此时,任意n维非零列向量都是A
*
的特征向量,故A
*
的特征向量不一定是A的特征向量.可知(B)不正确.
③假设α为A的特征向量,λ为其特征值,则α为A
2
的特征向量.这是由于A
2
α=A(Aα)=λAα=λ
2
α.但反之,若α为A
2
的特征向量,α不一定为A的特征向量.例如:假设Aβ
1
=β
1
,Aβ
2
=-β
2
,其中β
1
,β
2
≠0.此时有A
2
(β
1
+β
2
)=A
2
β
1
+A
2
β
2
=β
1
+β
2
,可知β
1
+β
2
为A
2
的特征向量.但β
1
,β
2
是矩阵A两个不同特征值的特征向量,它们的和β
1
+β
2
不是A的特征向量.故(C)不正确.
④若α为2A的特征向量,则存在实数λ使得2Aα=λα,此时有Aα=要地1/2λα,因此α为A的特征向量.可知(D)是正确的.故选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/9Gy4777K
0
考研数学二
相关试题推荐
设,其中函数f可微,则=()[img][/img]
设f(x)=2x+3x一2,则当x→0时()
某公司办公用品的月平均成本C与公司雇员人数z有如下关系:Cˊ=C2e-x+2C且C(0)=1,求C(x).
设P=,Q为三阶非零矩阵,且PQ=O,则().
设A,B均为n阶实对称矩阵,若A与B合同,则()
已知ξ1,ξ2是方程(λE一A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
设常数k>0,函数在(0,+∞)内零点个数为()
证明可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dx|(x0,y0)=fx’(x0,y0)△x+fy’(x0,y0)△y.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
随机试题
《诗经》是我国最早的诗歌总集,共收入西周初年至春秋中叶的诗歌_____首。
下列不属于现代组织结构形式的是()
27岁风心病患者,现妊娠8周出现心力衰竭,下列哪项处理原则正确
房地产项目市场比较定价法中价目表制定的步骤为()。
设直线平面π为4x—2y+z—2=0.则()。
拼图:纸板
根据下列材料回答问题。“十五”以来,广东省的产业集群发展迅速,特色产业基地已成为广东省经济持续高速增长的新亮点。据统计,2006年广东省特色产业基地工业总产值达4930亿元,约占全省工业总产值的10%;基地的高新技术产品产值1650亿元,占全省高
认知
宏命令RepaintObject的功能是()。
ThinkTwice:It’sAllRightAlegendaryfigureinmusichistory,Dylan,bornin1941,is【C1】________oneofthemostinfluent
最新回复
(
0
)