首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[x1,x2]可导,0<x1<x2,证明:∈(x1,x2)使得
设f(x)在[x1,x2]可导,0<x1<x2,证明:∈(x1,x2)使得
admin
2018-11-11
69
问题
设f(x)在[x
1
,x
2
]可导,0<x
1
<x
2
,证明:
∈(x
1
,x
2
)使得
选项
答案
令[*]∈(x
1
,x
2
)使得l=f(ξ)-ξf’(ξ)[*]xf’(x)-f(x)+l在(x
1
,x
2
)存在零点[*]在(x
1
,x
2
)存在零点[*]在(x
1
,x
2
)存在零点[*]在(x
1
,x
2
)存在零点. 令F(x)=[*],则f(x)在[x
1
,x
2
]可导,又 F(x
1
)=[*][f(x
1
)-l],F(x
2
)=[*][f(x
2
)-l], F(x
1
)-F(x
2
)=[*][f(x
1
)x
2
-f(x
2
)x
1
-l(x
2
-x
1
)]=0. 因此,由罗尔定理,[*]∈(x
1
,x
2
),使得 F’(ξ)=[*][ξf’(ξ)-f(ξ)+1]=0, 即f(ξ)-ξf’(ξ)=l.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9Cj4777K
0
考研数学二
相关试题推荐
计算∫Ly2dx,其中L为半径为a,圆心为原点,方向取逆时针方向的上半圆周.
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,一2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
设随机变量X和Y相互独立,其分布函数分别为FX(x)=,求U=X+Y的概率密度fU(u).
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
设A,B,C是n阶方阵,满足r(C)+r(B)=n,(A+E)C=O,B(AT一2E)=O.证明:A~A,并求A及|A|.
矩阵的三个特征值分别为_______.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是该方程组的解.
设二次型f(x1,X2,X3)=a()+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则___________.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时f(x)在x=0处可导.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
随机试题
下列说法错误的是()。
所有的网页都设有BBS。
某工厂生产过程中,次品率与日生产量关系是其中x为正数,每生产一件产品可赢利A元,但生产一件次品要损失元,问为了获得最大盈利,每天的生产量为多少?
A.增强药物的寒性B.洁净药物C.改变药物的作用趋向D.使质地酥脆,便于制剂和调剂E.矫正不良气味,利于服用动物药常用酒制、醋制、水漂等方法炮制,其主要的炮制目的是
A.阿托品B.吗啡C.氯丙嗪D.地西泮E.苯巴比妥钠甲亢患者术前不宜使用()。
试论述太平天国法制的革命性与局限性。
税务机关对当事人作出罚款行政处罚决定的,当事人缴纳罚款的期限是在收到行政处罚决定书之日起的()日内。(2003年)
信息流
下图属于古希腊()时期的雕塑作品。
无穷级数的收敛区间为_________.
最新回复
(
0
)