首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
admin
2018-12-19
93
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cosdx=0。证明在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0。
选项
答案
令F(x)=∫
0
x
f(x)dt,0≤x≤π,则有F(0)=0,F(π)=0。又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx=∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时,sinξ≠0,故F(ξ)=0。 由以上证得,存在满足0<ξ<π的ξ,使得F(0)=F(ξ)=F(π)=0,再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8jj4777K
0
考研数学二
相关试题推荐
计算
设x1=a>0,y1=b>0(a≤b),且证明:.
设f(x)在点x0的某邻域内有定义,且f(x)在x0间断,则在点x0处必定间断的函数是()
过点P(0,-)作抛物线y=]的切线,该切线与抛物线及x轴围成的平面区域为D,求该区域分别绕x轴和y轴旋转而成的体积.
(2013年)设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(1991年)求微分方程χy′+y=χeχ满足y(1)=1的特解.
假设λ为n阶可逆矩阵A的一个特征值,证明:(1)为A一1的特征值;(2)为A的伴随矩阵A*的特征值.
设二阶常系数线性微分方程,y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
微分方程y"+y=x2+1+sinx的特解形式可设为()
随机试题
按行政活动程序分类,北京市工商局属于()
耻骨及坐骨支骨折造成尿道滴血,此骨折属于()(1992年)
眼外伤患者就诊时首先检查的是
A.经皮肤传播B.经呼吸道传播C.经生殖道传播D.经消化道传播E.经吸血昆虫传播猪蛔虫病的主要传播途径是
下列不是胎盘早剥典型表现的是
对个人购买福利彩票、赈灾彩票、体育彩票,一次中奖收入不超过()元(含)的,暂免征收个人所得税。
在考生文件夹下完成如下操作:(1)新建一个名为“图书管理”的项目。(2)在项目中建立一个名为“图书”的数据库。(3)将考生文件夹下的所有自由表添加到“图书”数据库中。(4)在项目中建立查询bookqu:查询价格大于
Theearthquakeof26thDecember2004resultedinoneoftheworstnaturaldisastersinlivingmemory.Itwasa【C1】______underwa
PASSAGETWOWhyisthedescriptionofthepastnaturalenvironmentimportant?
HowtoKeepYourNewYear’sResolutionsAbouthalfofallAmericanadultssaytheyareatleastsomewhatlikelytomakeaNe
最新回复
(
0
)