首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数.c为(0,1)内任意一点. (1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式; (2)证明:|f′(c)|≤2a+b/2.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数.c为(0,1)内任意一点. (1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式; (2)证明:|f′(c)|≤2a+b/2.
admin
2022-08-19
77
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数.c为(0,1)内任意一点.
(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
(2)证明:|f′(c)|≤2a+b/2.
选项
答案
(1)f(x)=f(c)+f′(c)(x-c)+[f″(ξ)/2!](x-c)
2
,其中ξ介于c与x之间. (2)分别令x=0,x=1,得 f(0)=(c)-f′(c)c+[f″(ξ
1
)/2!]c
2
,ξ
1
∈(0,c), f(1)=f(c)+f′(c)(1-c)+[f″(ξ
2
)/2!](1-c)
2
,ξ
2
∈(c,1), 两式相减,得f′(c)=f(1)-f(0)+[f″(ξ
1
)/2!]-[f″(ξ
2
)/2!](1-c)
2
,利用已知条件,得 |f′(c)|≤2a+b/2[c
2
+(1-c)
2
], 因为c
2
+(1-c)
2
≤1,所以|f′(c)|≤2a+b/2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8jR4777K
0
考研数学三
相关试题推荐
设函数f(x)在|x|<δ内有定义且|f(x)|≤x2,则f(x)在x=0处().
设,则f(x)().
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
将f(x)=lnx展开成x-2的幂级数.
设有幂级数(1)求该幂级数的收敛域;(2)证明:此幂级数满足微分方程y’’-y=-1;(3)求此幂级数的和函数.
讨论函数的连续性.
设an为发散的正项级数,令S1=a1+a2+…+an(n=1,2,…).证明:收敛.
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f’’(x)|≤M,证明:|f’(x)|≤
设f(x)二阶可导,f(1)=0,令φ(x)=x2f(x),证明:存在ξ∈(0,1),使得φ’’(ξ)=0.
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是()
随机试题
使胎儿或新生儿Rh+红细胞发生溶解破坏的抗体是
中国文官制度的基础是隋唐确立的【】
硝酸甘油、β受体阻滞剂、钙通道阻滞剂治疗心绞痛的共同作用是
在体内有部分药物可代谢产生吗啡,被列入我国麻醉药品品种目录的镇咳药物是()。
周某采用向计算机植入木马程序的方法窃取齐某的网络游戏账号、密码等信息,将窃取到的相关数据存放在其租用的服务器中,并利用这些数据将齐某游戏账户内的金币、点券等虚拟商品放在第三方网络交易平台上进行售卖,获利5000元。下列哪些地区的法院对本案具有管辖权?
根据规定,下列具有行政主体资格的有()。
下列各项中,企业能够确认为资产的有()。
什么是解题方法多样化?解题方法的多样化有什么作用?谈谈如何促进解决问题方式的多样化。
有人说,中国文化传统这么深厚,为什么不能直接搞文化的新创造,为什么不能马上就跻身世界第一流和美国_______?培养明星还不是________?还需要什么努力,只要长得好就行。这其实是简单的想法,大众文化传播也是很的过程,资本的运作,文化规律的掌握,明星的
设函数f(x)在x=1的某邻域内连续,且则x=1是f(x)的
最新回复
(
0
)