首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)设α1,α2,α3是3维向量空间R3的一组基,则由基到基α1+α2,α2+α3,α3+α1的过渡矩阵为
(09年)设α1,α2,α3是3维向量空间R3的一组基,则由基到基α1+α2,α2+α3,α3+α1的过渡矩阵为
admin
2017-04-20
99
问题
(09年)设α
1
,α
2
,α
3
是3维向量空间R
3
的一组基,则由基
到基α
1
+α
2
,α
2
+α
3
,α
3
+α
1
的过渡矩阵为
选项
A、
B、
C、
D、
答案
A
解析
如果3维向量空间的一组基(I):ξ
1
,ξ
2
,ξ
3
与另一组基(Ⅱ):η
1
,η
2
,η
3
之间有如下关系:η
j
=a
1j
ξ
1
+a
2j
ξ
2
+a
3j
ξ
3
(j=1,2,3),写成矩阵形式,就是
[η
1
,η
2
,η
3
]=[ξ
1
,ξ
2
,ξ
3
]
其中a
ij
为常数(i,j=1,2,3),则称矩阵A=(a
ij
)
3×3
为由基(I)到基(Ⅱ)的过渡矩阵.现在容易得到
因此所求过渡矩阵为
.只有选项(A)正确.
转载请注明原文地址:https://www.kaotiyun.com/show/8Mu4777K
0
考研数学一
相关试题推荐
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
一实习生用同一台机器接连独立地制造3个同种零件,第i个零件是不合格品的概率Pi=1/(i+1)(i=1,2,3),以X表示3个零件中合格品的个数,则P{X=2}=___________.
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{丨x-μ丨
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设二维随机变量X和Y的联合概率密度为求X和Y的联合分布F(x,y).
设n元线性方程组Ax=b,其中(I)证明行刿式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
随机试题
下列妇科超声检查方法,错误的是
A.鱼际B.少商C.孔最D.列缺E.太渊
下列关于翼下颌间隙感染的说法,错误的是
具有化湿止呕作用,可用治湿浊中阻所致的呕吐的是
根据我国法律规定,居住用地和工业用地的土地使用权出让最高年限分别为()。
下列各项中,属于商业信用筹资方式的是()。
Bynomeans______whilelosingsightofpotentialproblems.
贾某在商场金店发现柜台内放有一条重12克、价值1600元的纯金项链,与自己所戴的镀金项链样式相同。贾某以挑选金项链为名,乘售货员不注意,用自己的镀金项链调换了上述纯金项链。贾某的行为构成()。
Inthatcountry,hospitaldoctorsdon’tgosightseeingveryoftenbecausetheirwork______almostalltheirtime.
充足的
最新回复
(
0
)