首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。 (Ⅰ)求齐次线性方程组(A-6E)x=0的通解: (Ⅱ)求正交变换x=Qy将二次型XTAx化为标准形;
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。 (Ⅰ)求齐次线性方程组(A-6E)x=0的通解: (Ⅱ)求正交变换x=Qy将二次型XTAx化为标准形;
admin
2017-11-30
87
问题
设A为3阶实对称矩阵,α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。
(Ⅰ)求齐次线性方程组(A-6E)x=0的通解:
(Ⅱ)求正交变换x=Qy将二次型X
T
Ax化为标准形;
(Ⅲ)求(A-3E)
100
。
选项
答案
(Ⅰ)因为矩阵A-6E不可逆,所以λ=6是矩阵A的一个特征值;另一方面,因为α
1
,α
2
是齐次线性方程组Ax=0的基础解系,所以λ=0是矩阵A的二重特征值,所以A的特征值为0,0,6。 齐次线性方程组(A-6E)x=0的通解是矩阵A的属于特征值λ=6的特征向量。因为A为3阶实对称矩阵,从而属于不同特征值的特征向量正交。 设α
3
=(x
1
,x
2
,x
3
)
T
是矩阵A的属于特征值λ=6的一个特征向量,则 (α
1
,α
3
)=0,(α
2
,α
3
)=0, 解得α
3
=(-1,-2,1)
T
,所以齐次线性方程组(A-6E)x=0的通解为kα
3
,k为任意常数。 (Ⅱ)下面将向量组α
1
,α
2
,α
3
正交化。令 [*] 下面将向量组β
1
,β
2
,β
3
单位化。令 [*] 则二次型x
T
Ax在正交变换x=Qy下的标准形为6y
3
2
。 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/89X4777K
0
考研数学三
相关试题推荐
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求: (1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面图形的
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一f(t)dt=0.(1)求f’(x);(2)证明:当x≥0时,e-x≤f(x)≤1.
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得
设f(x)为[a,b]上的函数且满足,x1,x2∈[a,b],则称f(x)为[a,b]上的凹函数,证明:若f(x)为[a,b]上的有界凹函数,则下列结论成立:①∈[0,1],f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),x1,x2
已知矩阵相似.求一个满足P-1AP=B的可逆矩阵P.
设线性线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
设从均值为μ,方差为σ2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为证明:对于任何满足条件a+b=1的常数a,b,是μ的无偏估计量,并确定常数a,b,使得方差DT达到最小.
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
设总体X服从正态分布N(μ,σ2),X1,X2,…,Xn是其样本.(1)求C使得是σ2的无偏估计量;(2)求k使得为σ的无偏估计量.
设曲线y=f(x)与y=∫0arctanxe-t2dt在原点处有相同切线,则=________.
随机试题
我国履行公证职能的组织模式是
下述哪类患者对治疗措施有自主选择权
天麻钩藤饮的功用是
下列乳腺癌的病理学类型中,属于原位癌的是
孕期妇女每日钙的供应量应在
华呐影视公司根据甲的小说改编成一部电影,其编剧为乙,导演为丙,摄影为丁。则下列说法正确的是()。
设X的密度函数为f(x)=,求k的取值范围.
当a>0时,=__________。
WhatdoesChrisorder?
Ienjoyedmyselfsomuch______IvisitedmyfriendsinParislastyear.
最新回复
(
0
)