首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
admin
2018-08-12
50
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.
试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是的n个行向量的转置向量.因此,由(Ⅰ)的基础解系可知 AB
T
=O 转置即得BA
T
=0 因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n(B的行向量组线性无关),故(Ⅱ)的解空间的维数为2n-r(B)=2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,即2n-r(A)=n,故r(A)=n,于是可知A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
其中c
1
,c
2
,…,c
n
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/81j4777K
0
考研数学二
相关试题推荐
设周期为4的函数f(x)处处可导,且,则曲线y=f(x)在(-3,f(-3))处的切线为_______.
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设对一切的x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2-1),讨论函数f(x)在x=0处的可导性.
[*]注解求n项之积或和的极限常用方法有:(1)先计算其积或和,再计算其极限;(2)夹逼定理;(3)定积分
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0x(t-x)dt=-3x+2,求f(x).
设4阶行列式的第2列元素依次为2,m,k,3,第2列元素的余子式依次为1,一1,1,一1,第4列元素的代数余子式依次为3,1,4,2.且行列式的值为1,求m,k.
已知随机变量X和Y分别服从正态分布N(1,32)和N(0,42),且X与Y的相关系数ρXY=.(1)求E(Z)和D(Z);(2)求X与Z的相关系数ρXY;(3)问X与Z是否相互独立,为什么?
连续进行某项试验,每次试验只有成功和失败两个结果,设当第k次成功时,第k+1次试验成功的概率为,当第k次失败时,第k+1次试验成功的概率为,且第一次试验成功与失败的概率均为,令X表示首次获得成功时的试验次数,求EX。
设α,β为四维非零的正交向量,且A=αβT.则A的线性无关的特征向量个数为().
随机试题
优美对象常常表现出的特征是()
市场调查与预测人员培训的方法很多,其中传统的培训方法是()
流动资产周转率是指流动资产平均占用额与流动资金在一定时期完成的周转额之间的比率,这个周转额通常表示成()
2型糖尿病最基本的病理生理改变是
缩减银行资产规模成为提高资本充足率最常用的手段之一。()
AccordingtoBritainlinguistF.Palmer,therearenorealsynonyms.Though"cast"and"throw"areconsideredsynonyms,theyare
下列有关生活中的物理常识,说法错误的是()。
Change,ortheabilityto【C1】______oneselftoachangingenvironmentisessential【C2】______evolution.Thefarmerwhoselandisr
下列对象不属于ADO对象模型的是()。
Therearecockroaches(蟑螂)everywhereonEarthexcepttheplacesthatarecoveredwithice.Scientistshavediscoveredabout3,50
最新回复
(
0
)