首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
admin
2016-10-26
58
问题
证明α
1
,α
2
,…,α
s
(其中α
1
≠0)线性相关的充分必要条件是存在一个α
i
(1<i≤s)能由它前面的那些向量α
1
,α
2
,…,α
i-1
线性表出.
选项
答案
必要性.因为α
1
,α
2
,…,α
s
线性相关,故有不全为0的k
1
,k
2
,…,k
s
,使 k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0. 设k
s
,k
s-1
,…,k
2
,k
1
中第一个不为0的是k
i
(即k
i
≠0,而k
i+1
=…=k
s-1
=k
s
=0),且必有i>1(若i=1即k
1
≠0,k
2
=…=k
s
=0,那么k
1
α
1
=0.于是α
1
=0与α
1
≠0矛盾.),从而k
1
α
1
+k
2
α
2
+…+k
i
α
i
=0, k
i
≠0.那么α
i
=[*](k
1
α
1
+k
2
α
2
+…+k
i-1
α
i-1
). 充分性.因为有α
i
=l
1
α
1
+l
2
α
2
+…+l
i-1
α
i-1
,于是 l
1
α
1
+…+l
i-1
α
i-1
-α
i
+0α
i+1
+…+0α
s
=0. 又因l
1
,…,l
i-1
,一1,0,…,0不全为0,故α
1
,α
2
,…,α
s
线性相关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7nu4777K
0
考研数学一
相关试题推荐
[*]
[*]
A、 B、 C、 D、 C
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
设f(x)>0且有连续导数,令(1)确定常数a,使φ(x)在x=0处连续;(2)求φˊ(x);(3)讨论φˊ(x)在x=0处的连续性;(4)证明当x≥0时,φˊ(x)单调增加.
求空间曲线积分J=∫Ly2dx+xydy+xzdz,其中L是圆柱面x2+y2=2y与平面y=z-1的交线,从戈轴正向看去取逆时针方向.
随机试题
A.卡托普利B.缬沙坦C.阿利克仑D.氢氯噻嗪E.普萘洛尔属于肾素抑制剂()。
铁路运输的优点是()
为减少房地产经纪业务风险,房地产经纪机构加强信息系统建设和管理,这种风险管理方法属于()。
拆迁计划和拆迁方案是拆迁申请的组成部分,其内容有()。
下列关于城市国有土地使用权出让规划控制的内容,说法正确的是()
在项目投资中,确定一般项目的净现金流量的方法中,特殊方法是指在特定条件下直接利用公式来确定项目净现金流量的方法,又称为公式法。()
在北京天安门广场,每天升国旗的时刻与太阳升起的时刻相同。下列节日中,国旗升起时刻最早的是()。
(2019年四川事业)甲育有一子乙,一女丙。甲生前留下遗嘱。指明其死后其财产3万元归乙、2万元赠与侄子丁。甲死后,留有遗产9万元,同时负债5万元。乙丙丁依法各分得5万元,2万元和2万元。遗产分割结束后。债权人索要欠款,但乙丙丁均不愿负担债务。下列债务分担符
Tohavetruedisciples,athinkermustnotbetoo______:anyeffectiveintellectualleaderdependsontheabilityofotherpeopl
A.BloodTypeApeopleareimpatientandeasilytogetangry.B.Themostcharacteristicattitudeofacynicisbeingsuspicious
最新回复
(
0
)