首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
admin
2021-02-25
66
问题
设向量组α
1
,α
2
,α
3
为3维向量空间R
3
的一个基,令β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=2α
1
+(k+1)α
3
.
当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求出所有的ξ.
选项
答案
设[*],则P为从基α
1
,α
2
,α
3
到基β
1
,β
2
,β
3
的过渡矩阵.又设ξ在基α
1
,α
2
,α
3
下的坐标为x=(x
1
,x
2
,x
3
)
T
,则ξ在基β
1
,β
2
,β
3
下的坐标为P
-1
x.由已知有x=P
-1
x,从而px=x.即(P-E)x=0. 又由于ξ≠0,所以其坐标向量x≠0,即齐次线性方程组(P-E)x=0应有非零解,于是[*],因此当k=0时,齐次线性方程组的非零解为[*],其中c为任意常数.从而ξ=-cα
1
+0α
2
+cα
3
,c为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7Y84777K
0
考研数学二
相关试题推荐
设矩阵且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的伴随矩阵.
分段函数一定不是初等函数,若正确,试证之;若不正确,试说明它们之间的关系?
证明
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
a,b取何值时,方程组有解?
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
随机试题
诊断脑瘫的依据包括
在D盘下新建一个Excel工作簿,完成以下操作:(1)在Sheet1工作表的A1:H6区域中建立和编辑如题54表所示的数据表。(2)设置“班级学习成绩表”为居中、加粗、字号20,“高一”、“高二”和“高三”为居中、加粗、字号16,各
在我国刑法的时间效力上,采取的原则是()。
异烟肼每日用量超过500mg时,主要的不良反应是
一位亚急性细菌性心内膜炎患者,下床活动后出现意识逐渐模糊至昏迷,并有右侧偏瘫,其最可能的原因是
A.外感风寒证B.外感风湿证C.暑湿疫毒证D.寒湿困脾证E.气血两虚证
女,30岁。北京郊区农民。因一周来发热,尿少2天,半天来无尿于1月20日来诊。一直高热,T39℃以上,伴头痛、全身痛,发病3日在当地医院诊治,查血压70/50mmHg,抗休克、抗感染治疗,疗效不著。尿少2天,每日400ml,半天来无尿而来本院。居住地有老
可行性研究阶段应考虑的技术方面的风险因素主要有( )。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
艾宾浩斯以自己为被试,采用机械重复记忆的方法,对遗忘规律进行定量研究,据此回答下列问题:实验使用的材料是什么?
最新回复
(
0
)