首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn,证明:方程组Ax=b有无穷多个解;求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn,证明:方程组Ax=b有无穷多个解;求方程组AX=b的通解.
admin
2022-11-07
71
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
+…+α
n
,证明:方程组Ax=b有无穷多个解;求方程组AX=b的通解.
选项
答案
因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以r(A)=n-1,即r(A)=r(A)=n-1<n,所以方程组AX=b有无穷多个解.因为a
1
+2α
2
+…+(n-1)a
n-1
=0,所以a
1
+2α
2
+…+(n-1)a
n-1
+0a
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
,又因为b=a
1
+α
2
+…+a
n
所以方程组AX=b有特解η=(1,1,…,1)
T
,故方程组AX=b的通解为kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7TgD777K
0
考研数学三
相关试题推荐
动词的前面能够加副词“不”,多数不能加_____。
某县扶贫办副主任甲,利用职务将一项造价20万的扶贫工程定价40万,对外招标。甲冒用A公司的营业执照、安全许可证等证明材料,参与该项目招标,又通过职权运作使“A公司”中标。之后,甲以“A公司”的名义将工程交给村民乙承建,并在工程完工验收后,利用职权将40万元
求微分方程(y-x3)dx-2xdy=0的通解.
差分方程yx+1-yx=x2x的通解为________.
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求常数a;求方程组AX=0的通解.
随机试题
()起全面取消农业税,标志着一个在我国存在两千多的古老税种宣告终结。
颈椎病发病率最高的是
副猪嗜血杆菌病最常见的病理变化是
女,35岁。停经3个月,阴道不规则流血3天,妇科检查子宫如4个月妊娠大小,B超显示官腔内落雪征。首先考虑
甲电视机厂因效益不好,经营困难,甲厂遂在电视台做广告说自己销售的电视机就是乙电视机厂(知名厂家)生产的电视机,则该行为构成何种不正当竞争行为?
某水利工程项目位于我国北部某省,枯水期流量很小,坝型为土石坝,设计采用黏土心墙防渗;坝址处河道狭窄,岸坡陡峻。大坝采用碾压式填筑,坝体施工前,施工单位进行了碾压试验。施工中,坝体靠近混凝土涵管部位的土方填筑,需要采取技术措施以确保工程质量。
一般而言,不适应于采用固定分红策略的公司是()。
向生产单位提供可能产生职业危害的化学品时,应当提供中文说明书。说明书应当载明产品特性、主要成分、存在的有害因素、可能产生的危害后果、安全使用注意事项、职业危害防护和应急处置措施等内容。产品包装应有醒目的警示标识和中文警示说明。这段文字旨在说明()
1948年6月,华侨领袖冯裕芳等人发表的声明中说:“一年以前,都市里许多不关心政治的上层人物,表示并不反对国民党打共产党,但希望早一点打完共产党,快点给他们和平。现在呢,他们改变了,他们希望共产党早点打完国民党,快点给他们和平。”导致上述变化的主要原因是这
如果某台微机用于日常办公事务,除了操作系统外,还应该安装的软件类别是:
最新回复
(
0
)