首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
针对一元二次方程概念与解法的一节复习课,教学目标如下: ①进一步了解一元二次方程的概念; ②进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等); ③会运用判别式判断一元二次方程根的情况; ④通过对相关问题的讨论,在理解相关知识的同时,体会数学
针对一元二次方程概念与解法的一节复习课,教学目标如下: ①进一步了解一元二次方程的概念; ②进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等); ③会运用判别式判断一元二次方程根的情况; ④通过对相关问题的讨论,在理解相关知识的同时,体会数学
admin
2017-09-19
79
问题
针对一元二次方程概念与解法的一节复习课,教学目标如下:
①进一步了解一元二次方程的概念;
②进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);
③会运用判别式判断一元二次方程根的情况;
④通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。
问题:
根据上述教学目标,完成下列任务:
为了落实上述教学目标①、②,请设计一个教学片段,并说明设计意图;
选项
答案
一、复习回顾 1.回顾一元二次方程与一元一次方程有什么区别?它们有什么共同点? 列出一些方程。与学生一起将方程分类 (1)x
2
+5x一6=0;(2)2x+5=1;(3)x+y+3=0; (4)(3—x)
2
+x
2
=9;(5)(y+2)(y—1)=7;(6)4x+1=3x+2。 要求:(1)引导学生观察回顾方程的特点;(2)通过对比复习一元一次方程定义和一元二次方程定义;(3)强调定义中体现的3个特钲:①整式;②一元;③2次。 2.要求学生用最顺手的方法解下列方程 (1)x
2
-121=0;(2)x
2
+3x=0;(3)(x+2)
2
=4; (4)x
2
一3x+2=0;(5)2x
2
+7x=4;(6)x
2
+2x-4=0。 思考:(1)方程具备什么特点做起来最顺手?(2)以上方程你选取了哪些方法? 二、习题教学 例题1:方程(m+2)x
|m|
+3mx+1=0是关于x的一元一次方程,m的值为( );若是关于x的一元二次方程。m的值为( )。 师生活动:教师出示问题,学生独立思考、回答。为了帮助学生有逻辑的思考,可追问以下问题。 追问1:一元一次方程的一般式是什么?m需要满足什么条件? 追问2:一元二次方程的一般式是什么?由此你能给出m需要满足的条件吗? 追问3:我们还学过哪种整式方程?写出一般式.比较你所学过的各种整式的方程,说明它们的未知数个数与次数。 设计意图:学生要会辨析几种整式方程的概念,分析出符合定义的未知数的次数。通过此题引导学生进一步理解一元二次方程的概念及一般式,回顾已学的其他整式的方程,加强知识的前后联系,帮助学生建立有关方程的知识体系。 例题2:解方程:x
2
一2x+1=25。你能给出哪些解法?你认为哪种解法最适合本方程? 师生活动:教师出示问题,学生独立思考、解答、展示。教师反馈并提出以下问题。 追问1:一元二次方程有哪些解法?他们在什么情况下最适用? 追问2:这几种解法之间有何联系?在基本思想上有何共同点? 设计意图:本题主要复习一元二次方程的解法,通过比较不同的解法,体会如何根据方程特点选择解法。方程左边可以写成完全平方式,所以可用配方法;也可将方程整理成一般式,用公式法;还可以用因式分解法。让学生深入思考这几种解法之间的联系,体会配方法的重要意义以及“降次”的基本思想。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7Ctv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
在牛顿经典力学问世后的200多年时间里,许多科学家认为,整个宇宙都要服从这一“永恒定律”。20世纪初,爱因斯坦发现牛顿的运动定律只有在宏观低速的情况下才是正确的,牛顿力学的“永恒定律”神话被打破。这启示我们()。
社会公德的建设最终要落实到每个公民的实际行动上,这是因为()。①社会公德的整体水平与每个人的行动息息相关②每个公民的行为都直接影响着社会公德的状况③社会公德整体水平的提高,有赖于党员、干部的带动④社会公德,往往表现在言谈举止之间,人人都能做到
甲厂生产一种易拉罐装碳酸饮料。消费者丙从乙商场购买这种饮料后,在开启时被罐内强烈气流炸伤眼部。下列选项中正确的是()。
推动京津冀协同发展,有序缓解北京非首都核心功能,解决北京“大城市病”的问题,必须坚持问题导向,立足各自比较优势、现代产业分工要求、区域优势互补原则与合作共赢理念,以资源环境承载能力为基础、以京津冀城市群建设为载体、以优化区域分工和产业布局为重点,着力调整优
个体在不同的年龄段表现出的身心发展不同的总体特征及主要矛盾,面临着不同的发展任务,这就是身心发展的()。
《义务教育数学课程标准(2011年版)》对“一元二次方程”的一条要求为:理解配方法,能用配方法、公式法、因式分解法解数学系数的一元二次方程.针对上述要求,完成下列任务.简要说明配方法、公式法、因式分解法的含义,并说明配方法在初中数学中还有哪些应用;
求幂级数的收敛域.
创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,下面的表述中不适合在教学中培养学生创新意识的是()。
设级数()
求幂级数的收敛域。
随机试题
师生关系在_______上是相互促进的关系。
建筑工程施工现场环境保护要求中,施工现场产生的固体废弃物应在所在地县级以上地方人民政府()部门申报登记,分类存放。
关于施工成本计划的说法中,错误的是()。
甲、乙、丙三个国有企业共同投资设立某有限责任公司,设立了董事会和监事会。股东会通过的下列决议中,不符合公司法律制度规定的有()。
甲企业拥有一处原值560000元的房产。已知房产税税率为1.2%,当地规定的房产税减除比例为30%。甲企业年应缴纳房产税税额的下列计算中,正确的是()。
某企业实施质量改进项目,采用网络图法。根据所搜集的资料绘制的网络图如图6.4—6所示。根据图形可分析出: 确定关键线路,便于()。
一般资料:求助者,女,58岁案例介绍:求助者一个月前在北方的投资失利,资金目前存在严重的缩水,想要撤回投资,可是有觉得目前还不是时候,不撤,只能眼睁睁地看着资金一点点减少,求助者觉得都是自己的错,自己真是太笨了,才导致今天的下场,自己本来打算能留
张军等兄弟五人为某食品有限公司全体股东,该公司为兄弟五人共同出资建立。公司股东会由兄弟五人组成,张军为公司法定代表人。公司成立并经营若干年后,兄弟五人析产,于是协议减少公司资本。该公司工商登记上的公司资本为170万元。公司的实际资产则有:①现金9.3万元
以下各项中,哪个选项2006年的产业值最大( )。根据材料,2005年浙江省的工业总产值约为( )。
对调用数据库数据的命令进行语法、语义和权限检查的信息,存储于下列哪一个(些)结构中?
最新回复
(
0
)