首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内连续,其一阶导函数f’(x)的图形如图所示,并设在f’(x)存在处f"(x)亦存在,则函数f(x)及曲线y=f(x)( )。
设函数f(x)在(-∞,+∞)内连续,其一阶导函数f’(x)的图形如图所示,并设在f’(x)存在处f"(x)亦存在,则函数f(x)及曲线y=f(x)( )。
admin
2021-07-02
61
问题
设函数f(x)在(-∞,+∞)内连续,其一阶导函数f’(x)的图形如图所示,并设在f’(x)存在处f"(x)亦存在,则函数f(x)及曲线y=f(x)( )。
选项
A、只有1个极大值点与1个拐点
B、有1个极小值点,1个极大值点与2个拐点
C、有1个极小值点,1个极大值点与2个拐点
D、有1个极小值点,1个极大值点与3个拐点
答案
D
解析
选项中涉及极大值点,极小值点以及拐点,所以应从所给f’(x)的图形中推出f"(x)的图形,为叙述方便,将原图注以字母,如图所示。
在x=x
1
处,[f’(x)]’=f"(x)=0,在x=x
1
左侧邻域,f"(x)=[f’(x)]’>0;
在x=x
1
右侧邻域,f”(x)=[f’(x)]’<0,所以点(x
1
,f(x
1
))是曲线y=f(x)的一个拐点,由左至右自凹变凸,而在x=x
1
两侧,f’(x)不变号,因此x=x
1
不是极值点。
在x=0左侧邻域,f’(x)<0,f"(x)=[f’(x)]’<0,在x=0右侧邻域,f’(x)>0,f"(x)=[f’(x)]’>0,所以x=0是f(x)的极小值点,点(0,f(0))又是曲线y=f(x)的一个拐点,由左至右,自凸变凹。
在x=x
2
处,类似于x=x
1
处的讨论,点(x
2
,f(x
2
))是曲线y=f(x)的一个拐点,由左至右,自凹变凸,又f’(x
2
)≠0,故x=x
2
不是极值点。
在x=x
3
处,f’(x
3
)=0,在x=x
3
左侧邻域,f’(x)>0,在x=x
3
处右侧邻域,f’(x)<0,所以x=x
3
是极大值点,又f”(x
3
)≠0,故(x
3
,f(x
3
))不是拐点。
综上,f(x)有1个极小值点(x=0),1个极大值点(x=x
3
),3个拐点(x
1
,f(x
1
)),(0,f(0)),(x
2
,f(x
2
)).选D.
转载请注明原文地址:https://www.kaotiyun.com/show/6ny4777K
0
考研数学二
相关试题推荐
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____________.
设函数y(x)由参数方程确定,则曲线y=y(x)向上凸的x取值范围为_________。
设y1=ex,y2=x2为某二阶齐次线性微分方程的两个特解,则该微分方程为__________.
设K,L,δ为正的常数,则=________.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最大值与最小值.
设a,b,n都是常数,.已知存在,但不为零,求n的最大值及相应的a,b的值.[img][/img]
设函数F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)
设f(x)=,则当x→0时,f(x)是g(x)的().
设二次型,经过正交变换X=QY化为标准形,求参数a,b及正交矩阵Q.
已知摆线的参数方程为其中0≤t≤2π,常数a>0.设该摆线一拱的弧长的数值等于该弧段绕x轴所围成的旋转曲面面积的数值.求a的值.
随机试题
从根本上制约着行政系统的规模、体制结构与运行方式等基本结构因素的是()
鼻咽()
孕激素治疗内膜癌时要注意()
下列不违反保密原则的做法是
在营业部经纪业务主要环节的操作规程方面,证券账户管理包括()等内容。I.证券账户的开立Ⅱ.证券账户信息变更Ⅲ.证券账户查询Ⅳ.证券账户注销
[*]
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且有EX=2DX,试求:(Ⅰ)常数A,B的值;(Ⅱ)E(X2+eχ);(Ⅲ)Y=的分布函数F(y).
在数据表的“查找”操作中,通配符“[!]”的使用方法是()。
TheImportanceofQuestionsFornon-nativespeakersofEnglishwhowanttoparticipateingroupdiscussions,itisimportant
A、Adeliciousmealofseafood.B、Awarmsun.C、Asandybeach.D、Acleansea.A
最新回复
(
0
)