首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为( )
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为( )
admin
2019-02-23
85
问题
设ξ
1
,ξ
2
是非齐次方程组AX=β的两个不同的解,η
1
,η
2
为它的导出组AX=0的一个基础解系,则它的通解为( )
选项
A、k
1
η
1
+k
2
η
2
(ξ
1
-ξ
2
)/2.
B、k
1
η
1
+k
2
(η
1
-η
2
)+(ξ
1
+ξ
2
)/2.
C、k
1
η
1
+k
2
(ξ
1
-ξ
2
)+(ξ
1
-ξ
2
)/2.
D、k
1
η
1
+k
2
(ξ
1
-ξ
2
)+(ξ
1
+ξ
2
)/2.
答案
B
解析
先看特解.(ξ
1
-ξ
2
)/2是AX=0的解,不是AX=β的解,从而选项A,C都不对.(ξ
1
+ξ
2
)/2是AX=β的解.
再看导出组的基础解系.在选项B中,η
1
,η
1
-η
2
是AX=0的两个解,并且由η
1
,η
2
线性无关容易得出它们也线性无关,从而可作出AX=0的基础解系,选项B正确.
在选项D中,虽然η
1
,ξ
1
-ξ
2
都是AX=0的解,但不知道它们是否线性无关,因此选项D作为一般性结论是不对的.
转载请注明原文地址:https://www.kaotiyun.com/show/6b04777K
0
考研数学一
相关试题推荐
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得≤_________.
曲线在xOy平面上的投影曲线为__________.
设3阶实对阵矩阵A满足A2-3A+2E=0,且|A|=2,则二次型f=xTAx的标准形为_____.
设A是一个n阶方阵,满足A2=A,R(A)=s且A有两个不同的特征值.(Ⅰ)试证A可对角化,并求对角阵A;(Ⅱ)计算行列式|A-2E|.
已知n维向量组(i)α1,α2,…,αs和(ii)β1,β2,…,βt的秩都为r,则下列命题中不正确的是().
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)一f’(ξ2)=0.(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX-bY,其中a,b为不相等的常数.求:(1)E(U),E(V),D(U),D(V),ρuv;(2)设U,V不相关,求常数a,b之间的关系.
已知a0=3,a1=5,对任意的n>1,有证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
设曲线Г的极坐标方程为r=eθ,则Г在点处的法线的直角坐标方程是______.
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则(Ⅰ)求齐次线性方程组(A-6E)χ=0的通解:(Ⅱ)求正交变换χ=Qy将二次型χTAχ化为标准形;
随机试题
“整体大于部分之和的效果”说明的是系统的特点()
影像质量的主观评价法是
我国最早的女科医生是首先提出"断脐不得以刀子割之"的医生是
A、广药B、怀药C、云药D、川药E、浙药处方中,按照道地药材划分地黄归属为()。
项目管理任务中,项目()管理是对项目信息传递的内容、方法和过程进行的全面管理。
民事活动中最核心、最基本的原则是()。
下列各项中,应直接计人所有者权益的有()。
古希腊哲学家克拉底鲁认为,万物只是一种不可名状的“旋风”,瞬息万变。他拒绝给事物以名称,主张对客观事物“什么都不能说”。其错误在于()
在学生表中要查找所有年龄小于20岁且姓王的男生,应采用的关系运算是()。
HistorianstendtotellthesamejokewhentheyaredescribinghistoryeducationinAmerica.It’stheone【C1】______theteachers
最新回复
(
0
)